| Non-Rationalised NCERT Books Solution | ||||||
|---|---|---|---|---|---|---|
| 6th | 7th | 8th | 9th | 10th | 11th | 12th |
Chapter 5 Complex Numbers And Quadratic Equations
This solutions guide explores Chapter 5: Complex Numbers and Quadratic Equations, a crucial chapter that significantly expands our number system beyond the familiar realm of real numbers. The very motivation for introducing complex numbers stems from a limitation encountered within the real number system: the inability to determine the square root of negative numbers. This limitation arises frequently, particularly when solving certain algebraic equations, most notably quadratic equations. To overcome this, mathematicians introduced the fundamental concept of the imaginary unit, universally denoted by the symbol iota ($i$). This unit is precisely defined by the property that its square is -1, that is, $i^2 = -1$, which implies $i = \sqrt{-1}$. The solutions first elucidate this definition and explore the cyclical nature of the powers of $i$ ($i^1=i, i^2=-1, i^3=-i, i^4=1$, and then the pattern repeats).
With the imaginary unit defined, a complex number ($z$) is formally expressed in the standard form $z = a + ib$, where $a$ and $b$ are real numbers. Here, '$a$' is designated as the real part of $z$, denoted $\text{Re}(z)$, and '$b$' is the imaginary part of $z$, denoted $\text{Im}(z)$. The solutions then systematically detail the algebra of complex numbers, defining the rules for performing fundamental operations:
- Addition: $(a+ib) + (c+id) = (a+c) + i(b+d)$
- Subtraction: $(a+ib) - (c+id) = (a-c) + i(b-d)$
- Multiplication: $(a+ib)(c+id) = (ac-bd) + i(ad+bc)$ (using $i^2 = -1$)
- Division: To divide $\frac{a+ib}{c+id}$, we multiply the numerator and denominator by the conjugate of the denominator, $\overline{c+id} = c-id$.
Two vital concepts associated with any complex number $z = a+ib$ are its conjugate, denoted $\bar{z}$ and defined as $\bar{z} = a - ib$ (simply changing the sign of the imaginary part), and its modulus, denoted $|z|$, which represents its magnitude or distance from the origin in the complex plane and is calculated as $|z| = \sqrt{a^2 + b^2}$. The solutions explore the properties of the conjugate and modulus (e.g., $z\bar{z} = |z|^2$) and demonstrate their use, particularly in finding the multiplicative inverse of a complex number $z^{-1} = \frac{\bar{z}}{|z|^2}$.
A significant aspect is the geometrical interpretation of complex numbers using the Argand plane (or complex plane). Here, a complex number $z = a+ib$ is represented as the point with coordinates $(a, b)$. This visual representation leads naturally to the polar (or trigonometric) form of a complex number. Instead of Cartesian coordinates $(a, b)$, we use polar coordinates $(r, \theta)$, where $r$ is the distance from the origin (which is the modulus, $r = |z|$) and $\theta$ is the angle made with the positive real axis (known as the argument or amplitude, $\theta = \text{Arg}(z)$). The polar form is expressed as $z = r(\cos \theta + i \sin \theta)$. The solutions provide detailed methods for converting complex numbers between the Cartesian ($a+ib$) form and the polar form, including the careful determination of the principal value of the argument $\theta$, which typically lies in the interval $(-\pi, \pi]$.
Finally, the chapter circles back to quadratic equations of the form $ax^2 + bx + c = 0$. With the introduction of complex numbers, we can now find solutions even when the discriminant ($D = b^2 - 4ac$) is negative. The solutions demonstrate the application of the standard quadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, in cases where $D < 0$. Since $\sqrt{D} = \sqrt{(-1)(-D)} = i\sqrt{-D}$ (where $-D$ is positive), the formula yields two complex conjugate roots. Methods for finding the square root of a complex number itself are also covered, often involving setting $\sqrt{a+ib} = x+iy$ and solving for $x$ and $y$. This comprehensive toolkit enables the manipulation of complex numbers and the solution of previously unsolvable quadratic equations.
Example 1 to 6 (Before Exercise 5.1)
Example 1: If $4x + i(3x \;–\; y) = 3 + i(– 6)$ , where x and y are real numbers, then find the values of x and y.
Answer:
Given:
The equation is $4x + i(3x - y) = 3 + i(-6)$.
Here, $x$ and $y$ are real numbers.
To Find:
The values of $x$ and $y$.
Solution:
We are given the equation:
$4x + i(3x - y) = 3 - 6i$
We know that two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are equal if and only if their real parts are equal and their imaginary parts are equal.
That is, $a = c$ and $b = d$.
Comparing the real parts of the given equation, we get:
$4x = 3$
...(i)
Solving for $x$:
$x = \frac{3}{4}$
Comparing the imaginary parts of the given equation, we get:
$3x - y = -6$
...(ii)
Substitute the value of $x = \frac{3}{4}$ from equation (i) into equation (ii):
$3 \left( \frac{3}{4} \right) - y = -6$
$\frac{9}{4} - y = -6$
Rearranging the terms to solve for $y$:
$y = \frac{9}{4} + 6$
$y = \frac{9 + 4 \times 6}{4}$
$y = \frac{9 + 24}{4}$
$y = \frac{33}{4}$
Conclusion:
The values of $x$ and $y$ are $x = \frac{3}{4}$ and $y = \frac{33}{4}$.
Example 2: Express the following in the form of $a \;+\; bi$:
(i) $(-5i) \left( \frac{1}{8}i \right)$
(i) $(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$
Answer:
(i)
Given Expression:
$(-5i) \left( \frac{1}{8}i \right)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We have:
$(-5i) \left( \frac{1}{8}i \right) = \left(-5 \times \frac{1}{8}\right) \times (i \times i)$
$= -\frac{5}{8} \times i^2$
Since $i^2 = -1$, we substitute this value:
$= -\frac{5}{8} \times (-1)$
$= \frac{5}{8}$
To express this in the form $a + bi$, we can write:
$= \frac{5}{8} + 0i$
Here, $a = \frac{5}{8}$ and $b = 0$.
(ii)
Given Expression:
$(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We have:
$(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$
First, let's simplify $(-i)(2i)$:
$(-i)(2i) = -2 \times i^2 = -2(-1) = 2$
Next, let's simplify $\left( -\frac{1}{8}i\right)^{3}$:
$\left( -\frac{1}{8}i\right)^{3} = \left(-\frac{1}{8}\right)^3 \times i^3$
$= -\frac{1}{8 \times 8 \times 8} \times i^3$
$= -\frac{1}{512} \times i^3$
We know that $i^3 = i^2 \times i = (-1) \times i = -i$. Substituting this:
$= -\frac{1}{512} \times (-i)$
$= \frac{1}{512} i$
Now, multiply the simplified parts:
$(-i) (2i) \left( -\frac{1}{8}i\right)^{3} = (2) \times \left( \frac{1}{512} i \right)$
$= \frac{2}{512} i$
$= \frac{\cancel{2}^1}{\cancel{512}_{256}} i$
$= \frac{1}{256} i$
To express this in the form $a + bi$, we can write:
$0 + \frac{1}{256} i$
Here, $a = 0$ and $b = \frac{1}{256}$.
Example 3: Express $(5 \;–\; 3i)^3$ in the form $a \;+\; bi$.
Answer:
Given Expression:
$(5 - 3i)^3$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to expand $(5 - 3i)^3$. We can use the binomial expansion formula for $(x - y)^3$:
$(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$
Let $x = 5$ and $y = 3i$. Substituting these values into the formula:
$(5 - 3i)^3 = (5)^3 - 3(5)^2(3i) + 3(5)(3i)^2 - (3i)^3$
Now, let's calculate each term:
$(5)^3 = 125$
$3(5)^2(3i) = 3(25)(3i) = 75(3i) = 225i$
$3(5)(3i)^2 = 15 (3^2 i^2) = 15 (9 i^2)$
Since $i^2 = -1$:
$15 (9 (-1)) = 15 (-9) = -135$
$(3i)^3 = 3^3 i^3 = 27 i^3$
Since $i^3 = i^2 \cdot i = (-1)i = -i$:
$27 (-i) = -27i$
Now substitute these calculated values back into the expanded expression:
$(5 - 3i)^3 = 125 - 225i + (-135) - (-27i)$
$= 125 - 225i - 135 + 27i$
Group the real and imaginary parts:
$= (125 - 135) + (-225 + 27)i$
$= -10 + (-198)i$
$= -10 - 198i$
Conclusion:
The expression $(5 - 3i)^3$ in the form $a + bi$ is $-10 - 198i$.
Here, $a = -10$ and $b = -198$.
Example 4: Express $(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$ in the form of $a \;+\; bi$
Answer:
Given Expression:
$(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
First, simplify the term $\sqrt{-2}$:
$\sqrt{-2} = \sqrt{-1 \times 2} = \sqrt{-1} \times \sqrt{2} = i\sqrt{2}$
Substitute this back into the expression:
$(-\sqrt{3} + i\sqrt{2}) (2\sqrt{3}- i)$
Now, multiply the two complex numbers using the distributive property:
$= (-\sqrt{3})(2\sqrt{3}) + (-\sqrt{3})(-i) + (i\sqrt{2})(2\sqrt{3}) + (i\sqrt{2})(-i)$
Calculate each term:
$(-\sqrt{3})(2\sqrt{3}) = -2(\sqrt{3})^2 = -2(3) = -6$
$(-\sqrt{3})(-i) = i\sqrt{3}$
$(i\sqrt{2})(2\sqrt{3}) = i(2\sqrt{2 \times 3}) = i(2\sqrt{6})$
$(i\sqrt{2})(-i) = -i^2 \sqrt{2}$
Since $i^2 = -1$, the last term becomes:
$-(-1)\sqrt{2} = \sqrt{2}$
Combine the terms:
$ = -6 + i\sqrt{3} + i(2\sqrt{6}) + \sqrt{2}$
Group the real parts and the imaginary parts:
$= (-6 + \sqrt{2}) + (i\sqrt{3} + i(2\sqrt{6}))$
$= (-6 + \sqrt{2}) + i(\sqrt{3} + 2\sqrt{6})$
Conclusion:
The expression $(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$ in the form $a + bi$ is $(-6 + \sqrt{2}) + i(\sqrt{3} + 2\sqrt{6})$.
Here, $a = -6 + \sqrt{2}$ and $b = \sqrt{3} + 2\sqrt{6}$.
Example 5: Find the multiplicative inverse of $2 \;–\; 3i$
Answer:
Given:
The complex number is $z = 2 - 3i$.
To Find:
The multiplicative inverse of $z$, denoted as $z^{-1}$ or $\frac{1}{z}$.
Solution:
The multiplicative inverse of a complex number $z$ is $\frac{1}{z}$.
So, we need to find $\frac{1}{2 - 3i}$.
To express the multiplicative inverse in the form $a + bi$, we multiply the numerator and the denominator by the complex conjugate of the denominator.
The complex conjugate of $z = 2 - 3i$ is $\bar{z} = 2 + 3i$.
Multiply $\frac{1}{2 - 3i}$ by $\frac{2 + 3i}{2 + 3i}$:
$z^{-1} = \frac{1}{2 - 3i} \times \frac{2 + 3i}{2 + 3i}$
$z^{-1} = \frac{2 + 3i}{(2 - 3i)(2 + 3i)}$
Using the property $(a - bi)(a + bi) = a^2 + b^2$ for the denominator:
$(2 - 3i)(2 + 3i) = (2)^2 + (3)^2 = 4 + 9 = 13$
Substitute this back into the expression for $z^{-1}$:
$z^{-1} = \frac{2 + 3i}{13}$
Separate the real and imaginary parts:
$z^{-1} = \frac{2}{13} + \frac{3}{13}i$
This is in the form $a + bi$, where $a = \frac{2}{13}$ and $b = \frac{3}{13}$.
Alternate Solution:
The multiplicative inverse of a non-zero complex number $z = a + bi$ can be found using the formula:
$z^{-1} = \frac{\bar{z}}{|z|^2}$
Where $\bar{z}$ is the complex conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
Given $z = 2 - 3i$. Here, $a = 2$ and $b = -3$.
The complex conjugate is $\bar{z} = 2 - (-3i) = 2 + 3i$.
The square of the modulus is $|z|^2 = a^2 + b^2 = (2)^2 + (-3)^2 = 4 + 9 = 13$.
Now, substitute $\bar{z}$ and $|z|^2$ into the formula:
$z^{-1} = \frac{2 + 3i}{13}$
Expressing this in the form $a + bi$:
$z^{-1} = \frac{2}{13} + \frac{3}{13}i$
Conclusion:
The multiplicative inverse of $2 - 3i$ is $\frac{2}{13} + \frac{3}{13}i$.
Example 6: Express the following in the form $a \;+\; bi$
(i) $\frac{5 \;+\; \sqrt{2}i}{1\;-\;\sqrt{2}i}$
(ii) $i^{-35}$
Answer:
(i)
Given Expression:
$\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
To express the fraction in the form $a + bi$, we multiply the numerator and the denominator by the complex conjugate of the denominator.
The denominator is $1 - \sqrt{2}i$.
The complex conjugate of the denominator is $1 + \sqrt{2}i$.
Multiply the expression by $\frac{1 + \sqrt{2}i}{1 + \sqrt{2}i}$:
$\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} = \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} \times \frac{1 + \sqrt{2}i}{1 + \sqrt{2}i}$
$= \frac{(5 + \sqrt{2}i)(1 + \sqrt{2}i)}{(1 - \sqrt{2}i)(1 + \sqrt{2}i)}$
Expand the numerator:
$(5 + \sqrt{2}i)(1 + \sqrt{2}i) = 5(1) + 5(\sqrt{2}i) + (\sqrt{2}i)(1) + (\sqrt{2}i)(\sqrt{2}i)$
$ = 5 + 5\sqrt{2}i + \sqrt{2}i + (\sqrt{2})^2 i^2$
$ = 5 + (5\sqrt{2} + \sqrt{2})i + 2i^2$
$ = 5 + 6\sqrt{2}i + 2(-1)$ (Since $i^2 = -1$)
$ = 5 + 6\sqrt{2}i - 2$
$ = 3 + 6\sqrt{2}i$
Expand the denominator using the property $(a - bi)(a + bi) = a^2 + b^2$:
$(1 - \sqrt{2}i)(1 + \sqrt{2}i) = (1)^2 + (\sqrt{2})^2$
$ = 1 + 2 = 3$
Substitute the expanded numerator and denominator back into the fraction:
$\frac{3 + 6\sqrt{2}i}{3}$
Separate the real and imaginary parts:
$= \frac{3}{3} + \frac{6\sqrt{2}}{3}i$
$ = 1 + 2\sqrt{2}i$
Conclusion (i):
The expression $\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}$ in the form $a + bi$ is $1 + 2\sqrt{2}i$.
Here, $a = 1$ and $b = 2\sqrt{2}$.
(ii)
Given Expression:
$i^{-35}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We have:
$i^{-35} = \frac{1}{i^{35}}$
To simplify $i^{35}$, we find the remainder when 35 is divided by 4.
$35 = 4 \times 8 + 3$
So, the remainder is 3.
$i^{35} = i^3$
We know that $i^3 = i^2 \cdot i = (-1)i = -i$.
Substitute this back into the expression:
$i^{-35} = \frac{1}{-i}$
To express this in the form $a + bi$, multiply the numerator and denominator by $i$:
$\frac{1}{-i} \times \frac{i}{i} = \frac{i}{-i^2}$
Since $i^2 = -1$:
$= \frac{i}{-(-1)} = \frac{i}{1} = i$
To write this in the form $a + bi$:
$0 + 1i$
Conclusion (ii):
The expression $i^{-35}$ in the form $a + bi$ is $0 + i$.
Here, $a = 0$ and $b = 1$.
Exercise 5.1
Express each of the complex number given in the Exercises 1 to 10 in the form $a \;+\; bi$.
Question 1. $(5i) \left(-\frac{3}{5} i \right)$
Answer:
Given Expression:
$(5i) \left(-\frac{3}{5} i \right)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to multiply the given complex numbers:
$(5i) \left(-\frac{3}{5} i \right) = \left( 5 \times -\frac{3}{5} \right) \times (i \times i)$
First, multiply the coefficients:
$5 \times \left(-\frac{3}{5}\right) = -\frac{5 \times 3}{5} = -\frac{\cancel{15}^3}{\cancel{5}_1} = -3$
Next, multiply the imaginary units:
$i \times i = i^2$
We know that $i^2 = -1$.
Substitute the values back into the expression:
$= (-3) \times i^2$
$= (-3) \times (-1)$
$= 3$
To express this in the form $a + bi$, we can write:
$3 + 0i$
Conclusion:
The expression $(5i) \left(-\frac{3}{5} i \right)$ in the form $a + bi$ is $3 + 0i$.
Here, $a = 3$ and $b = 0$.
Question 2. $i^9 + i^{19}$
Answer:
Given Expression:
$i^9 + i^{19}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to simplify the powers of $i$. We know the cycle of powers of $i$: $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
To simplify $i^n$, we can find the remainder when $n$ is divided by 4.
Simplify $i^9$:
Divide 9 by 4:
$9 = 4 \times 2 + 1$
The remainder is 1. Therefore:
$i^9 = i^1 = i$
Simplify $i^{19}$:
Divide 19 by 4:
$19 = 4 \times 4 + 3$
The remainder is 3. Therefore:
$i^{19} = i^3$
We know $i^3 = -i$. So:
$i^{19} = -i$
Now, substitute these simplified values back into the original expression:
$i^9 + i^{19} = i + (-i)$
$= i - i$
$= 0$
To express this in the form $a + bi$, we can write:
$0 + 0i$
Conclusion:
The expression $i^9 + i^{19}$ in the form $a + bi$ is $0 + 0i$.
Here, $a = 0$ and $b = 0$.
Question 3. $i^{-39}$
Answer:
Given Expression:
$i^{-39}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We have the expression $i^{-39}$. Using the property of exponents $x^{-n} = \frac{1}{x^n}$, we can write:
$i^{-39} = \frac{1}{i^{39}}$
To simplify $i^{39}$, we find the remainder when 39 is divided by 4. The cycle of powers of $i$ repeats every 4 ($i^1=i, i^2=-1, i^3=-i, i^4=1$).
Divide 39 by 4:
$39 = 4 \times 9 + 3$
The remainder is 3. Therefore:
$i^{39} = i^3$
We know that $i^3 = i^2 \cdot i = (-1)i = -i$.
So, $i^{39} = -i$.
Substitute this value back into the expression for $i^{-39}$:
$i^{-39} = \frac{1}{-i}$
To express this in the form $a + bi$, we need to eliminate $i$ from the denominator. Multiply the numerator and the denominator by $i$:
$\frac{1}{-i} \times \frac{i}{i} = \frac{i}{-i^2}$
Since $i^2 = -1$, substitute this value:
$= \frac{i}{-(-1)}$
$= \frac{i}{1}$
$= i$
To write this in the standard form $a + bi$:
$0 + 1i$
Conclusion:
The expression $i^{-39}$ in the form $a + bi$ is $0 + i$.
Here, $a = 0$ and $b = 1$.
Question 4. $3(7 \;+\; i7) \;+\; i (7 \;+\; i7)$
Answer:
Given Expression:
$3(7 + i7) + i (7 + i7)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to simplify the given expression $3(7 + i7) + i (7 + i7)$.
First, distribute the terms:
$3(7 + i7) = 3 \times 7 + 3 \times (i7) = 21 + 21i$
$i(7 + i7) = i \times 7 + i \times (i7) = 7i + 7i^2$
Now substitute $i^2 = -1$ in the second part:
$7i + 7i^2 = 7i + 7(-1) = 7i - 7$
Now add the results of the two distributions:
$3(7 + i7) + i (7 + i7) = (21 + 21i) + (7i - 7)$
Group the real parts and the imaginary parts:
$= (21 - 7) + (21i + 7i)$
Combine the terms:
$= 14 + (21 + 7)i$
$= 14 + 28i$
Conclusion:
The expression $3(7 + i7) + i (7 + i7)$ in the form $a + bi$ is $14 + 28i$.
Here, $a = 14$ and $b = 28$.
Question 5. $(1 \;–\; i) \;–\; ( –1 \;+\; i6)$
Answer:
Given Expression:
$(1 - i) - (-1 + i6)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to simplify the expression $(1 - i) - (-1 + i6)$.
First, remove the parentheses. Remember to distribute the negative sign to both terms in the second parenthesis:
$(1 - i) - (-1 + i6) = 1 - i - (-1) - (+i6)$
$= 1 - i + 1 - 6i$
Now, group the real parts and the imaginary parts:
$= (1 + 1) + (-i - 6i)$
Combine the real terms and the imaginary terms:
$= 2 + (-1 - 6)i$
$= 2 + (-7)i$
$= 2 - 7i$
Conclusion:
The expression $(1 - i) - (-1 + i6)$ in the form $a + bi$ is $2 - 7i$.
Here, $a = 2$ and $b = -7$.
Question 6. $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$
Answer:
Given Expression:
$\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to simplify the expression $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$.
First, remove the parentheses. Distribute the negative sign to the terms in the second parenthesis:
$= \frac{1}{5} + i\frac{2}{5} - 4 - i\frac{5}{2}$
Group the real parts and the imaginary parts:
$= \left( \frac{1}{5} - 4 \right) + \left( i\frac{2}{5} - i\frac{5}{2} \right)$
Combine the real parts. Find a common denominator (5):
$\frac{1}{5} - 4 = \frac{1}{5} - \frac{4 \times 5}{5} = \frac{1}{5} - \frac{20}{5} = \frac{1 - 20}{5} = -\frac{19}{5}$
Combine the imaginary parts. Factor out $i$ and find a common denominator (10):
$i\left( \frac{2}{5} - \frac{5}{2} \right) = i\left( \frac{2 \times 2}{5 \times 2} - \frac{5 \times 5}{2 \times 5} \right)$
$ = i\left( \frac{4}{10} - \frac{25}{10} \right)$
$ = i\left( \frac{4 - 25}{10} \right)$
$ = i\left( -\frac{21}{10} \right) = -\frac{21}{10}i$
Combine the simplified real and imaginary parts:
$ = -\frac{19}{5} - \frac{21}{10}i$
Conclusion:
The expression $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$ in the form $a + bi$ is $-\frac{19}{5} - \frac{21}{10}i$.
Here, $a = -\frac{19}{5}$ and $b = -\frac{21}{10}$.
Question 7. $\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$
Answer:
Given Expression:
$\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$
To Find:
Express the given expression in the form $a + bi$.
Solution:
First, simplify the expression inside the square brackets:
$\left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right)$
Group the real parts and the imaginary parts:
$= \left( \frac{1}{3} + 4 \right) + \left( i\frac{7}{3} + i\frac{1}{3} \right)$
Combine the real parts (common denominator is 3):
$\frac{1}{3} + \frac{4 \times 3}{3} = \frac{1}{3} + \frac{12}{3} = \frac{1 + 12}{3} = \frac{13}{3}$
Combine the imaginary parts:
$i\left( \frac{7}{3} + \frac{1}{3} \right) = i\left( \frac{7 + 1}{3} \right) = i\frac{8}{3}$
So, the expression inside the square brackets simplifies to:
$\frac{13}{3} + i\frac{8}{3}$
Now, substitute this back into the original expression:
$\left( \frac{13}{3} + i\frac{8}{3} \right) - \left( -\frac{4}{3}+i \right)$
Remove the parentheses, distributing the negative sign:
$ = \frac{13}{3} + i\frac{8}{3} - \left(-\frac{4}{3}\right) - i$
$ = \frac{13}{3} + i\frac{8}{3} + \frac{4}{3} - i$
Group the real parts and the imaginary parts:
$ = \left( \frac{13}{3} + \frac{4}{3} \right) + \left( i\frac{8}{3} - i \right)$
Combine the real parts:
$\frac{13 + 4}{3} = \frac{17}{3}$
Combine the imaginary parts:
$i\left( \frac{8}{3} - 1 \right) = i\left( \frac{8}{3} - \frac{3}{3} \right) = i\left( \frac{8 - 3}{3} \right) = i\frac{5}{3}$
Combine the simplified real and imaginary parts:
$ = \frac{17}{3} + i\frac{5}{3}$
Conclusion:
The expression $\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$ in the form $a + bi$ is $\frac{17}{3} + i\frac{5}{3}$.
Here, $a = \frac{17}{3}$ and $b = \frac{5}{3}$.
Question 8. $(1 \;–\; i)^4$
Answer:
Given Expression:
$(1 - i)^4$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to compute $(1 - i)^4$. We can write this as $((1 - i)^2)^2$.
First, let's calculate $(1 - i)^2$ using the formula $(x - y)^2 = x^2 - 2xy + y^2$:
$(1 - i)^2 = (1)^2 - 2(1)(i) + (i)^2$
$= 1 - 2i + i^2$
Since $i^2 = -1$, we substitute this value:
$= 1 - 2i + (-1)$
$= 1 - 2i - 1$
$= -2i$
Now, we need to calculate $((1 - i)^2)^2$, which is $(-2i)^2$:
$(1 - i)^4 = (-2i)^2$
$= (-2)^2 \times (i)^2$
$ = 4 \times i^2$
Substitute $i^2 = -1$ again:
$= 4 \times (-1)$
$= -4$
To express this in the standard form $a + bi$, we write:
$-4 + 0i$
Conclusion:
The expression $(1 - i)^4$ in the form $a + bi$ is $-4 + 0i$.
Here, $a = -4$ and $b = 0$.
Question 9. $\left( \frac{1}{3}+3i \right)^{3}$
Answer:
Given Expression:
$\left( \frac{1}{3}+3i \right)^{3}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to expand $\left( \frac{1}{3} + 3i \right)^{3}$. We use the binomial expansion formula for $(x + y)^3$:
$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
Let $x = \frac{1}{3}$ and $y = 3i$. Substitute these values into the formula:
$\left( \frac{1}{3} + 3i \right)^3 = \left(\frac{1}{3}\right)^3 + 3\left(\frac{1}{3}\right)^2(3i) + 3\left(\frac{1}{3}\right)(3i)^2 + (3i)^3$
Now, calculate each term:
$\left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3} = \frac{1}{27}$
$3\left(\frac{1}{3}\right)^2(3i) = 3 \times \frac{1}{9} \times 3i = \frac{3 \times 3}{9} i = \frac{9}{9} i = i$
$3\left(\frac{1}{3}\right)(3i)^2 = 3 \times \frac{1}{3} \times (3^2 i^2) = 1 \times (9 i^2) = 9i^2$
Since $i^2 = -1$:
$9i^2 = 9(-1) = -9$
$(3i)^3 = 3^3 \times i^3 = 27 i^3$
Since $i^3 = i^2 \cdot i = (-1)i = -i$:
$27 i^3 = 27(-i) = -27i$
Now substitute these calculated values back into the expanded expression:
$\left( \frac{1}{3} + 3i \right)^3 = \frac{1}{27} + i + (-9) + (-27i)$
$= \frac{1}{27} + i - 9 - 27i$
Group the real parts and the imaginary parts:
$= \left( \frac{1}{27} - 9 \right) + (i - 27i)$
Combine the real parts (find a common denominator):
$\frac{1}{27} - 9 = \frac{1}{27} - \frac{9 \times 27}{27} = \frac{1 - 243}{27} = -\frac{242}{27}$
Combine the imaginary parts:
$(1 - 27)i = -26i$
Combine the simplified real and imaginary parts:
$ = -\frac{242}{27} - 26i$
Conclusion:
The expression $\left( \frac{1}{3}+3i \right)^{3}$ in the form $a + bi$ is $-\frac{242}{27} - 26i$.
Here, $a = -\frac{242}{27}$ and $b = -26$.
Question 10. $\left( -2-\frac{1}{3}i\right)^{3}$
Answer:
Given Expression:
$\left( -2-\frac{1}{3}i\right)^{3}$
To Find:
Express the given expression in the form $a + bi$.
Solution:
We need to compute $\left( -2-\frac{1}{3}i\right)^{3}$.
First, factor out $-1$ from the base:
$\left( -2-\frac{1}{3}i\right)^{3} = \left[ -1 \left( 2+\frac{1}{3}i \right) \right]^3$
$ = (-1)^3 \left( 2+\frac{1}{3}i \right)^3$
$ = - \left( 2+\frac{1}{3}i \right)^3$
Now, we use the binomial expansion formula for $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
Let $x = 2$ and $y = \frac{1}{3}i$.
$\left( 2+\frac{1}{3}i \right)^3 = (2)^3 + 3(2)^2\left(\frac{1}{3}i\right) + 3(2)\left(\frac{1}{3}i\right)^2 + \left(\frac{1}{3}i\right)^3$
Calculate each term:
$(2)^3 = 8$
$3(2)^2\left(\frac{1}{3}i\right) = 3(4)\left(\frac{1}{3}i\right) = 12 \times \frac{1}{3}i = 4i$
$3(2)\left(\frac{1}{3}i\right)^2 = 6\left(\frac{1}{9}i^2\right) = \frac{6}{9}i^2 = \frac{2}{3}i^2$
Since $i^2 = -1$:
$\frac{2}{3}i^2 = \frac{2}{3}(-1) = -\frac{2}{3}$
$\left(\frac{1}{3}i\right)^3 = \left(\frac{1}{3}\right)^3 i^3 = \frac{1}{27}i^3$
Since $i^3 = -i$:
$\frac{1}{27}i^3 = \frac{1}{27}(-i) = -\frac{1}{27}i$
Substitute these values back into the expansion of $\left( 2+\frac{1}{3}i \right)^3$:
$ = 8 + 4i - \frac{2}{3} - \frac{1}{27}i$
Group the real and imaginary parts:
$= \left( 8 - \frac{2}{3} \right) + \left( 4i - \frac{1}{27}i \right)$
Combine the real parts:
$8 - \frac{2}{3} = \frac{24}{3} - \frac{2}{3} = \frac{22}{3}$
Combine the imaginary parts:
$4i - \frac{1}{27}i = \left( 4 - \frac{1}{27} \right)i = \left( \frac{108}{27} - \frac{1}{27} \right)i = \frac{107}{27}i$
So, $\left( 2+\frac{1}{3}i \right)^3 = \frac{22}{3} + \frac{107}{27}i$.
Finally, apply the negative sign from the beginning:
$\left( -2-\frac{1}{3}i\right)^{3} = - \left( \frac{22}{3} + \frac{107}{27}i \right)$
$= -\frac{22}{3} - \frac{107}{27}i$
Conclusion:
The expression $\left( -2-\frac{1}{3}i\right)^{3}$ in the form $a + bi$ is $-\frac{22}{3} - \frac{107}{27}i$.
Here, $a = -\frac{22}{3}$ and $b = -\frac{107}{27}$.
Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.
Question 11. $4 \;–\; 3i$
Answer:
Given:
The complex number is $z = 4 - 3i$.
To Find:
The multiplicative inverse of $z$, denoted as $z^{-1}$ or $\frac{1}{z}$.
Solution:
The multiplicative inverse of a complex number $z$ is given by $\frac{1}{z}$.
So, we need to calculate $z^{-1} = \frac{1}{4 - 3i}$.
To express the inverse in the standard form $a + bi$, we multiply the numerator and the denominator by the complex conjugate of the denominator.
The complex conjugate of $z = 4 - 3i$ is $\bar{z} = 4 + 3i$.
Multiply $\frac{1}{4 - 3i}$ by $\frac{4 + 3i}{4 + 3i}$:
$z^{-1} = \frac{1}{4 - 3i} \times \frac{4 + 3i}{4 + 3i}$
$z^{-1} = \frac{4 + 3i}{(4 - 3i)(4 + 3i)}$
Using the property $(a - bi)(a + bi) = a^2 + b^2$ for the denominator:
$(4 - 3i)(4 + 3i) = (4)^2 + (3)^2 = 16 + 9 = 25$
Substitute this back into the expression for $z^{-1}$:
$z^{-1} = \frac{4 + 3i}{25}$
Separate the real and imaginary parts to get the form $a + bi$:
$z^{-1} = \frac{4}{25} + \frac{3}{25}i$
Alternate Solution:
The multiplicative inverse of a non-zero complex number $z = a + bi$ can be calculated using the formula:
$z^{-1} = \frac{\bar{z}}{|z|^2}$
Where $\bar{z}$ is the complex conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
Given $z = 4 - 3i$. Here, $a = 4$ and $b = -3$.
The complex conjugate is $\bar{z} = 4 - (-3i) = 4 + 3i$.
The square of the modulus is $|z|^2 = a^2 + b^2 = (4)^2 + (-3)^2 = 16 + 9 = 25$.
Now, substitute $\bar{z}$ and $|z|^2$ into the formula:
$z^{-1} = \frac{4 + 3i}{25}$
Expressing this in the form $a + bi$:
$z^{-1} = \frac{4}{25} + \frac{3}{25}i$
Conclusion:
The multiplicative inverse of $4 - 3i$ is $\frac{4}{25} + \frac{3}{25}i$.
Question 12. $\sqrt{5}+3i$
Answer:
Given:
The complex number is $z = \sqrt{5} + 3i$.
To Find:
The multiplicative inverse of $z$, denoted as $z^{-1}$ or $\frac{1}{z}$.
Solution:
The multiplicative inverse of a complex number $z$ is given by $\frac{1}{z}$.
So, we need to calculate $z^{-1} = \frac{1}{\sqrt{5} + 3i}$.
To express the inverse in the standard form $a + bi$, we multiply the numerator and the denominator by the complex conjugate of the denominator.
The complex conjugate of $z = \sqrt{5} + 3i$ is $\bar{z} = \sqrt{5} - 3i$.
Multiply $\frac{1}{\sqrt{5} + 3i}$ by $\frac{\sqrt{5} - 3i}{\sqrt{5} - 3i}$:
$z^{-1} = \frac{1}{\sqrt{5} + 3i} \times \frac{\sqrt{5} - 3i}{\sqrt{5} - 3i}$
$z^{-1} = \frac{\sqrt{5} - 3i}{(\sqrt{5} + 3i)(\sqrt{5} - 3i)}$
Using the property $(a + bi)(a - bi) = a^2 + b^2$ for the denominator:
$(\sqrt{5} + 3i)(\sqrt{5} - 3i) = (\sqrt{5})^2 + (3)^2 = 5 + 9 = 14$
Substitute this back into the expression for $z^{-1}$:
$z^{-1} = \frac{\sqrt{5} - 3i}{14}$
Separate the real and imaginary parts to get the form $a + bi$:
$z^{-1} = \frac{\sqrt{5}}{14} - \frac{3}{14}i$
Alternate Solution:
The multiplicative inverse of a non-zero complex number $z = a + bi$ can be calculated using the formula:
$z^{-1} = \frac{\bar{z}}{|z|^2}$
Where $\bar{z}$ is the complex conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
Given $z = \sqrt{5} + 3i$. Here, $a = \sqrt{5}$ and $b = 3$.
The complex conjugate is $\bar{z} = \sqrt{5} - 3i$.
The square of the modulus is $|z|^2 = a^2 + b^2 = (\sqrt{5})^2 + (3)^2 = 5 + 9 = 14$.
Now, substitute $\bar{z}$ and $|z|^2$ into the formula:
$z^{-1} = \frac{\sqrt{5} - 3i}{14}$
Expressing this in the form $a + bi$:
$z^{-1} = \frac{\sqrt{5}}{14} - \frac{3}{14}i$
Conclusion:
The multiplicative inverse of $\sqrt{5} + 3i$ is $\frac{\sqrt{5}}{14} - \frac{3}{14}i$.
Question 13. $– i$
Answer:
Given:
The complex number is $z = -i$. This can also be written as $z = 0 - i$.
To Find:
The multiplicative inverse of $z$, denoted as $z^{-1}$ or $\frac{1}{z}$.
Solution:
The multiplicative inverse of a complex number $z$ is given by $\frac{1}{z}$.
So, we need to calculate $z^{-1} = \frac{1}{-i}$.
To express the inverse in the standard form $a + bi$, we multiply the numerator and the denominator by the complex conjugate of the denominator.
The complex conjugate of $z = 0 - i$ is $\bar{z} = 0 + i = i$.
Multiply $\frac{1}{-i}$ by $\frac{i}{i}$ (Note: Multiplying by $\frac{i}{i}$ is a common technique to simplify fractions with $i$ in the denominator):
$z^{-1} = \frac{1}{-i} \times \frac{i}{i}$
$z^{-1} = \frac{i}{-i^2}$
Since $i^2 = -1$, substitute this value:
$z^{-1} = \frac{i}{-(-1)}$
$z^{-1} = \frac{i}{1}$
$z^{-1} = i$
Separate the real and imaginary parts to get the form $a + bi$:
$z^{-1} = 0 + 1i$
Alternate Solution:
The multiplicative inverse of a non-zero complex number $z = a + bi$ can be calculated using the formula:
$z^{-1} = \frac{\bar{z}}{|z|^2}$
Where $\bar{z}$ is the complex conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
Given $z = -i = 0 - 1i$. Here, $a = 0$ and $b = -1$.
The complex conjugate is $\bar{z} = 0 - (-1)i = 0 + 1i = i$.
The square of the modulus is $|z|^2 = a^2 + b^2 = (0)^2 + (-1)^2 = 0 + 1 = 1$.
Now, substitute $\bar{z}$ and $|z|^2$ into the formula:
$z^{-1} = \frac{i}{1}$
$z^{-1} = i$
Expressing this in the form $a + bi$:
$z^{-1} = 0 + 1i$
Conclusion:
The multiplicative inverse of $-i$ is $i$, which can be written as $0 + i$.
Question 14. Express the following expression in the form of $a \;+\; bi$ :
$\frac{(\sqrt{3}\;+\;i\sqrt{5})(3\;-\;i\sqrt{5})}{(\sqrt{3}\;+\;\sqrt{2}i)\;-\;(\sqrt{3}\;-\;i\sqrt{2})}$
Answer:
Given Expression:
Let the given expression be $Z$.
$Z = \frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2})}$
To Find:
Express the given expression $Z$ in the form $a + bi$.
Solution:
We first simplify the numerator and the denominator separately.
Numerator:
The numerator is $(3 + i\sqrt{5})(3 - i\sqrt{5})$.
This is in the form $(a + ib)(a - ib)$, which equals $a^2 + b^2$.
Here, $a = 3$ and $b = \sqrt{5}$.
Numerator $= (3)^2 + (\sqrt{5})^2$
$= 9 + 5$
$ = 14$
Denominator:
The denominator is $(\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2})$.
Remove the parentheses:
Denominator $= \sqrt{3} + i\sqrt{2} - \sqrt{3} - (-i\sqrt{2})$
$= \sqrt{3} + i\sqrt{2} - \sqrt{3} + i\sqrt{2}$
Group the real and imaginary parts:
$= (\sqrt{3} - \sqrt{3}) + (i\sqrt{2} + i\sqrt{2})$
$ = 0 + 2i\sqrt{2}$
$ = 2\sqrt{2}i$
Combine Numerator and Denominator:
Now substitute the simplified numerator and denominator back into the expression for $Z$:
$Z = \frac{14}{2\sqrt{2}i}$
Simplify the fraction:
$Z = \frac{\cancel{14}^7}{\cancel{2}\sqrt{2}i} = \frac{7}{\sqrt{2}i}$
To express $Z$ in the form $a + bi$, we need to eliminate $i$ from the denominator. Multiply the numerator and denominator by $i$:
$Z = \frac{7}{\sqrt{2}i} \times \frac{i}{i}$
$Z = \frac{7i}{\sqrt{2}i^2}$
Since $i^2 = -1$:
$Z = \frac{7i}{\sqrt{2}(-1)}$
$Z = -\frac{7i}{\sqrt{2}}$
To rationalize the denominator, multiply the numerator and denominator by $\sqrt{2}$:
$Z = -\frac{7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$Z = -\frac{7\sqrt{2}i}{(\sqrt{2})^2}$
$Z = -\frac{7\sqrt{2}i}{2}$
Finally, write the expression in the form $a + bi$:
$Z = 0 - \frac{7\sqrt{2}}{2}i$
Conclusion:
The expression $\frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + i\sqrt{2}) - (\sqrt{3} - i\sqrt{2})}$ in the form $a + bi$ is $0 - \frac{7\sqrt{2}}{2}i$.
Here, $a = 0$ and $b = -\frac{7\sqrt{2}}{2}$.
Example 7 & 8 (Before Exercise 5.2)
Example 7: Represent the complex number $z = 1 + i\sqrt{3}$ in the polar form
Answer:
Given:
The complex number is $z = 1 + i\sqrt{3}$.
To Find:
The polar form of the complex number $z$.
Solution:
The standard form of a complex number is $z = x + iy$. Comparing this with the given number, we have:
$x = 1$ and $y = \sqrt{3}$.
The polar form of a complex number is given by $z = r(\cos \theta + i \sin \theta)$, where $r$ is the modulus and $\theta$ is the argument.
Step 1: Calculate the modulus, $r$.
The modulus is calculated using the formula $r = |z| = \sqrt{x^2 + y^2}$.
$r = \sqrt{(1)^2 + (\sqrt{3})^2}$
$r = \sqrt{1 + 3} = \sqrt{4}$
$r = 2$
Step 2: Calculate the argument, $\theta$.
The argument $\theta$ must satisfy the equations:
$\cos \theta = \frac{x}{r} = \frac{1}{2}$
$\sin \theta = \frac{y}{r} = \frac{\sqrt{3}}{2}$
Since both $\cos \theta$ and $\sin \theta$ are positive, the angle $\theta$ lies in the first quadrant.
The principal value of $\theta$ that satisfies these conditions is $\theta = \frac{\pi}{3}$.
Step 3: Write the polar form.
Substitute the values of $r=2$ and $\theta = \frac{\pi}{3}$ into the polar form expression:
$z = 2 \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \right)$
The polar form of the complex number $z = 1 + i\sqrt{3}$ is $2 \left( \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right)$.
Example 8: Convert the complex number $\frac{-16}{1\;+\;i\sqrt{3}}$ into polar form.
Answer:
Given:
The complex number is $z = \frac{-16}{1 + i\sqrt{3}}$.
To Find:
The polar form of the complex number $z$.
Solution:
Step 1: Convert the complex number to the standard form $x + iy$.
To do this, we multiply the numerator and the denominator by the conjugate of the denominator, which is $1 - i\sqrt{3}$.
$z = \frac{-16}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}$
$z = \frac{-16(1 - i\sqrt{3})}{(1)^2 + (\sqrt{3})^2}$
$z = \frac{-16(1 - i\sqrt{3})}{1 + 3} = \frac{-16(1 - i\sqrt{3})}{4}$
$z = -4(1 - i\sqrt{3})$
$z = -4 + 4i\sqrt{3}$
Now, we have $x = -4$ and $y = 4\sqrt{3}$.
Step 2: Calculate the modulus, $r$.
$r = |z| = \sqrt{x^2 + y^2} = \sqrt{(-4)^2 + (4\sqrt{3})^2}$
$r = \sqrt{16 + 16 \times 3} = \sqrt{16 + 48} = \sqrt{64}$
$r = 8$
Step 3: Calculate the argument, $\theta$.
The argument $\theta$ must satisfy:
$\cos \theta = \frac{x}{r} = \frac{-4}{8} = -\frac{1}{2}$
$\sin \theta = \frac{y}{r} = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$
Since $\cos \theta$ is negative and $\sin \theta$ is positive, the angle $\theta$ lies in the second quadrant.
The reference angle $\alpha$ for which $\cos \alpha = \frac{1}{2}$ is $\alpha = \frac{\pi}{3}$.
For the second quadrant, the principal argument is $\theta = \pi - \alpha$.
$\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
Step 4: Write the polar form.
Substitute the values of $r=8$ and $\theta = \frac{2\pi}{3}$ into the polar form expression:
$z = 8 \left( \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) \right)$
The polar form of the complex number $\frac{-16}{1 + i\sqrt{3}}$ is $8 \left( \cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3} \right)$.
Exercise 5.2
Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.
Question 1. $z = –\; 1 \;–\; i\sqrt{3}$
Answer:
Given:
The complex number is $z = -1 - i\sqrt{3}$.
To Find:
The modulus and the argument of the complex number $z$.
Solution:
The given complex number is in the standard form $z = x + iy$, where:
$x = -1$
$y = -\sqrt{3}$
Modulus:
The modulus of $z$, denoted as $r$ or $|z|$, is given by the formula $r = \sqrt{x^2 + y^2}$.
$r = \sqrt{(-1)^2 + (-\sqrt{3})^2}$
$r = \sqrt{1 + 3} = \sqrt{4}$
$r = 2$
So, the modulus is 2.
Argument:
Let $\theta$ be the argument of $z$. The argument must satisfy:
$\cos \theta = \frac{x}{r} = \frac{-1}{2}$
$\sin \theta = \frac{y}{r} = \frac{-\sqrt{3}}{2}$
Since both $\cos \theta$ and $\sin \theta$ are negative, the angle $\theta$ lies in the third quadrant.
Let $\alpha$ be the reference angle, such that $\tan \alpha = \left|\frac{y}{x}\right| = \left|\frac{-\sqrt{3}}{-1}\right| = \sqrt{3}$.
This gives $\alpha = \frac{\pi}{3}$.
For an angle in the third quadrant, the principal argument (in the range $(-\pi, \pi]$) is given by $\theta = -(\pi - \alpha)$.
$\theta = -\left(\pi - \frac{\pi}{3}\right) = -\frac{2\pi}{3}$
So, the argument is $-\frac{2\pi}{3}$.
Conclusion:
For the complex number $z = -1 - i\sqrt{3}$, the modulus is 2 and the argument is $-\frac{2\pi}{3}$.
Question 2. $z = – \;\sqrt{3} \;+\; i$
Answer:
Given:
The complex number is $z = -\sqrt{3} + i$.
To Find:
The modulus and the argument of the complex number $z$.
Solution:
The given complex number is in the standard form $z = x + iy$, where:
$x = -\sqrt{3}$
$y = 1$
Modulus:
The modulus is $r = \sqrt{x^2 + y^2}$.
$r = \sqrt{(-\sqrt{3})^2 + (1)^2}$
$r = \sqrt{3 + 1} = \sqrt{4}$
$r = 2$
So, the modulus is 2.
Argument:
Let $\theta$ be the argument. It must satisfy:
$\cos \theta = \frac{x}{r} = \frac{-\sqrt{3}}{2}$
$\sin \theta = \frac{y}{r} = \frac{1}{2}$
Since $\cos \theta$ is negative and $\sin \theta$ is positive, the angle $\theta$ lies in the second quadrant.
The reference angle $\alpha$ is given by $\tan \alpha = \left|\frac{y}{x}\right| = \left|\frac{1}{-\sqrt{3}}\right| = \frac{1}{\sqrt{3}}$.
This gives $\alpha = \frac{\pi}{6}$.
For an angle in the second quadrant, the principal argument is $\theta = \pi - \alpha$.
$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
So, the argument is $\frac{5\pi}{6}$.
Conclusion:
For the complex number $z = -\sqrt{3} + i$, the modulus is 2 and the argument is $\frac{5\pi}{6}$.
Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
Question 3. $1 \;–\; i $
Answer:
Given:
The complex number is $z = 1 - i$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = 1 - i$, so $x = 1$ and $y = -1$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{-1}{\sqrt{2}}$
Since $\cos \theta$ is positive and $\sin \theta$ is negative, $\theta$ is in the fourth quadrant.
The reference angle is $\alpha = \frac{\pi}{4}$. For the fourth quadrant, the principal argument is $\theta = -\alpha = -\frac{\pi}{4}$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right)$
The polar form is $\sqrt{2} \left( \cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}) \right)$.
Question 4. $– 1 \;+\; i $
Answer:
Given:
The complex number is $z = -1 + i$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = -1 + i$, so $x = -1$ and $y = 1$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2}$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{1}{\sqrt{2}}$
Since $\cos \theta$ is negative and $\sin \theta$ is positive, $\theta$ is in the second quadrant.
The reference angle is $\alpha = \frac{\pi}{4}$. For the second quadrant, the principal argument is $\theta = \pi - \alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = \sqrt{2} \left( \cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4} \right)$
The polar form is $\sqrt{2} \left( \cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4} \right)$.
Question 5. $– 1 \ – \ i $
Answer:
Given:
The complex number is $z = -1 - i$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = -1 - i$, so $x = -1$ and $y = -1$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{-1}{\sqrt{2}}$
Since both $\cos \theta$ and $\sin \theta$ are negative, $\theta$ is in the third quadrant.
The reference angle is $\alpha = \frac{\pi}{4}$. For the third quadrant, the principal argument is $\theta = -(\pi - \alpha) = -(\pi - \frac{\pi}{4}) = -\frac{3\pi}{4}$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = \sqrt{2} \left( \cos\left(-\frac{3\pi}{4}\right) + i \sin\left(-\frac{3\pi}{4}\right) \right)$
The polar form is $\sqrt{2} \left( \cos(-\frac{3\pi}{4}) + i \sin(-\frac{3\pi}{4}) \right)$.
Question 6. – 3
Answer:
Given:
The complex number is $z = -3$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = -3 + 0i$, so $x = -3$ and $y = 0$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + (0)^2} = \sqrt{9} = 3$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{-3}{3} = -1$
$\sin \theta = \frac{y}{r} = \frac{0}{3} = 0$
The angle for which $\cos\theta = -1$ and $\sin\theta = 0$ is $\theta = \pi$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = 3(\cos\pi + i \sin\pi)$
The polar form is $3(\cos\pi + i \sin\pi)$.
Question 7. $\sqrt{3} \;+\; i $
Answer:
Given:
The complex number is $z = \sqrt{3} + i$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = \sqrt{3} + i$, so $x = \sqrt{3}$ and $y = 1$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{\sqrt{3}}{2}$
$\sin \theta = \frac{y}{r} = \frac{1}{2}$
Since both $\cos \theta$ and $\sin \theta$ are positive, $\theta$ is in the first quadrant.
The angle that satisfies these conditions is $\theta = \frac{\pi}{6}$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = 2 \left( \cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right)$
The polar form is $2 \left( \cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right)$.
Question 8. $i $
Answer:
Given:
The complex number is $z = i$.
To Find:
The polar form of the complex number $z$.
Solution:
The complex number is $z = 0 + 1i$, so $x = 0$ and $y = 1$.
Step 1: Find the modulus $r$.
$r = \sqrt{x^2 + y^2} = \sqrt{(0)^2 + (1)^2} = \sqrt{1} = 1$.
Step 2: Find the argument $\theta$.
$\cos \theta = \frac{x}{r} = \frac{0}{1} = 0$
$\sin \theta = \frac{y}{r} = \frac{1}{1} = 1$
The angle for which $\cos\theta = 0$ and $\sin\theta = 1$ is $\theta = \frac{\pi}{2}$.
Step 3: Write the polar form.
The polar form is $z = r(\cos \theta + i \sin \theta)$.
$z = 1 \left( \cos\frac{\pi}{2} + i \sin\frac{\pi}{2} \right)$
The polar form is $\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}$.
Example 9 to 11 (Before Exercise 5.3)
Example 9: Solve x2 + 2 = 0
Answer:
Given:
The quadratic equation is $x^2 + 2 = 0$.
To Find:
The solution(s) for $x$.
Solution:
We are given the equation:
$x^2 + 2 = 0$
To solve for $x$, we first isolate the $x^2$ term. Subtract 2 from both sides of the equation:
$x^2 = -2$
Now, take the square root of both sides to find the values of $x$:
$x = \pm \sqrt{-2}$
Since the square root of a negative number involves the imaginary unit $i$, where $i = \sqrt{-1}$, we can rewrite $\sqrt{-2}$ as:
$x = \pm \sqrt{(-1) \times 2}$
$x = \pm \sqrt{-1} \times \sqrt{2}$
$x = \pm i \sqrt{2}$
Thus, the solutions are $x = i\sqrt{2}$ and $x = -i\sqrt{2}$.
Conclusion:
The solutions to the quadratic equation $x^2 + 2 = 0$ are $x = i\sqrt{2}$ and $x = -i\sqrt{2}$.
Example 10: Solve x2 + x + 1= 0
Answer:
Given:
The quadratic equation is $x^2 + x + 1 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $x^2 + x + 1 = 0$ with the standard form, we have:
$a = 1$
$b = 1$
$c = 1$
We can use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(1)(1)$
$D = 1 - 4$
$D = -3$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-3}}{2(1)}$
$x = \frac{-1 \pm \sqrt{-3}}{2}$
We know that $\sqrt{-3} = \sqrt{-1 \times 3} = \sqrt{-1} \times \sqrt{3} = i\sqrt{3}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{3}}{2}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{3}}{2}$
$x_2 = \frac{-1 - i\sqrt{3}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 + x + 1 = 0$ are $x = \frac{-1 + i\sqrt{3}}{2}$ and $x = \frac{-1 - i\sqrt{3}}{2}$.
Example 11: Solve $\sqrt{5}$ x2 + x + $\sqrt{5}$ = 0
Answer:
Given:
The quadratic equation is $\sqrt{5} x^2 + x + \sqrt{5} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $\sqrt{5} x^2 + x + \sqrt{5} = 0$ with the standard form, we identify the coefficients:
$a = \sqrt{5}$
$b = 1$
$c = \sqrt{5}$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(\sqrt{5})(\sqrt{5})$
$D = 1 - 4(5)$
$D = 1 - 20$
$D = -19$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-19}}{2(\sqrt{5})}$
$x = \frac{-1 \pm \sqrt{-19}}{2\sqrt{5}}$
We know that $\sqrt{-19} = \sqrt{-1 \times 19} = \sqrt{-1} \times \sqrt{19} = i\sqrt{19}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{19}}{2\sqrt{5}}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{19}}{2\sqrt{5}}$
$x_2 = \frac{-1 - i\sqrt{19}}{2\sqrt{5}}$
Conclusion:
The solutions to the quadratic equation $\sqrt{5} x^2 + x + \sqrt{5} = 0$ are $x = \frac{-1 + i\sqrt{19}}{2\sqrt{5}}$ and $x = \frac{-1 - i\sqrt{19}}{2\sqrt{5}}$.
Exercise 5.3
Solve each of the following equations:
Question 1. x2 + 3 = 0
Answer:
Given:
The quadratic equation is $x^2 + 3 = 0$.
To Find:
The solution(s) for $x$.
Solution:
We are given the equation:
$x^2 + 3 = 0$
To solve for $x$, we first isolate the $x^2$ term. Subtract 3 from both sides of the equation:
$x^2 = -3$
Now, take the square root of both sides to find the values of $x$:
$x = \pm \sqrt{-3}$
Since the square root of a negative number involves the imaginary unit $i$, where $i = \sqrt{-1}$, we can rewrite $\sqrt{-3}$ as:
$x = \pm \sqrt{(-1) \times 3}$
$x = \pm \sqrt{-1} \times \sqrt{3}$
$x = \pm i \sqrt{3}$
Thus, the solutions are $x = i\sqrt{3}$ and $x = -i\sqrt{3}$.
Conclusion:
The solutions to the quadratic equation $x^2 + 3 = 0$ are $x = i\sqrt{3}$ and $x = -i\sqrt{3}$.
Question 2. 2x2 + x + 1 = 0
Answer:
Given:
The quadratic equation is $2x^2 + x + 1 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $2x^2 + x + 1 = 0$ with the standard form, we identify the coefficients:
$a = 2$
$b = 1$
$c = 1$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(2)(1)$
$D = 1 - 8$
$D = -7$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-7}}{2(2)}$
$x = \frac{-1 \pm \sqrt{-7}}{4}$
We know that $\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \times \sqrt{7} = i\sqrt{7}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{7}}{4}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{7}}{4}$
$x_2 = \frac{-1 - i\sqrt{7}}{4}$
Conclusion:
The solutions to the quadratic equation $2x^2 + x + 1 = 0$ are $x = \frac{-1 + i\sqrt{7}}{4}$ and $x = \frac{-1 - i\sqrt{7}}{4}$.
Question 3. x2 + 3x + 9 = 0
Answer:
Given:
The quadratic equation is $x^2 + 3x + 9 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $x^2 + 3x + 9 = 0$ with the standard form, we identify the coefficients:
$a = 1$
$b = 3$
$c = 9$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (3)^2 - 4(1)(9)$
$D = 9 - 36$
$D = -27$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(3) \pm \sqrt{-27}}{2(1)}$
$x = \frac{-3 \pm \sqrt{-27}}{2}$
We simplify $\sqrt{-27}$:
$\sqrt{-27} = \sqrt{-1 \times 27} = \sqrt{-1} \times \sqrt{27} = i \sqrt{9 \times 3} = i (3\sqrt{3}) = 3i\sqrt{3}$
Substitute this back into the expression for $x$:
$x = \frac{-3 \pm 3i\sqrt{3}}{2}$
The two solutions are:
$x_1 = \frac{-3 + 3i\sqrt{3}}{2}$
$x_2 = \frac{-3 - 3i\sqrt{3}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 + 3x + 9 = 0$ are $x = \frac{-3 + 3i\sqrt{3}}{2}$ and $x = \frac{-3 - 3i\sqrt{3}}{2}$.
Question 4. – x2 + x – 2 = 0
Answer:
Given:
The quadratic equation is $-x^2 + x - 2 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $-x^2 + x - 2 = 0$ with the standard form, we identify the coefficients:
$a = -1$
$b = 1$
$c = -2$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(-1)(-2)$
$D = 1 - 8$
$D = -7$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-7}}{2(-1)}$
$x = \frac{-1 \pm \sqrt{-7}}{-2}$
We know that $\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \times \sqrt{7} = i\sqrt{7}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{7}}{-2}$
To simplify, we can multiply the numerator and denominator by $-1$:
$x = \frac{(-1)(-1 \pm i\sqrt{7})}{(-1)(-2)}$
$x = \frac{1 \mp i\sqrt{7}}{2}$
The two solutions are:
$x_1 = \frac{1 - i\sqrt{7}}{2}$
$x_2 = \frac{1 + i\sqrt{7}}{2}$
Conclusion:
The solutions to the quadratic equation $-x^2 + x - 2 = 0$ are $x = \frac{1 - i\sqrt{7}}{2}$ and $x = \frac{1 + i\sqrt{7}}{2}$.
Question 5. x2 + 3x + 5 = 0
Answer:
Given:
The quadratic equation is $x^2 + 3x + 5 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $x^2 + 3x + 5 = 0$ with the standard form, we identify the coefficients:
$a = 1$
$b = 3$
$c = 5$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (3)^2 - 4(1)(5)$
$D = 9 - 20$
$D = -11$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(3) \pm \sqrt{-11}}{2(1)}$
$x = \frac{-3 \pm \sqrt{-11}}{2}$
We know that $\sqrt{-11} = \sqrt{-1 \times 11} = \sqrt{-1} \times \sqrt{11} = i\sqrt{11}$.
Substitute this back into the expression for $x$:
$x = \frac{-3 \pm i\sqrt{11}}{2}$
The two solutions are:
$x_1 = \frac{-3 + i\sqrt{11}}{2}$
$x_2 = \frac{-3 - i\sqrt{11}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 + 3x + 5 = 0$ are $x = \frac{-3 + i\sqrt{11}}{2}$ and $x = \frac{-3 - i\sqrt{11}}{2}$.
Question 6. x2 – x + 2 = 0
Answer:
Given:
The quadratic equation is $x^2 - x + 2 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $x^2 - x + 2 = 0$ with the standard form, we identify the coefficients:
$a = 1$
$b = -1$
$c = 2$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-1)^2 - 4(1)(2)$
$D = 1 - 8$
$D = -7$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-1) \pm \sqrt{-7}}{2(1)}$
$x = \frac{1 \pm \sqrt{-7}}{2}$
We know that $\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \times \sqrt{7} = i\sqrt{7}$.
Substitute this back into the expression for $x$:
$x = \frac{1 \pm i\sqrt{7}}{2}$
The two solutions are:
$x_1 = \frac{1 + i\sqrt{7}}{2}$
$x_2 = \frac{1 - i\sqrt{7}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 - x + 2 = 0$ are $x = \frac{1 + i\sqrt{7}}{2}$ and $x = \frac{1 - i\sqrt{7}}{2}$.
Question 7. $\sqrt{2}$ x2 + x + $\sqrt{2}$ = 0
Answer:
Given:
The quadratic equation is $\sqrt{2} x^2 + x + \sqrt{2} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $\sqrt{2} x^2 + x + \sqrt{2} = 0$ with the standard form, we identify the coefficients:
$a = \sqrt{2}$
$b = 1$
$c = \sqrt{2}$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(\sqrt{2})(\sqrt{2})$
$D = 1 - 4(2)$
$D = 1 - 8$
$D = -7$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-7}}{2(\sqrt{2})}$
$x = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}}$
We know that $\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \times \sqrt{7} = i\sqrt{7}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{7}}{2\sqrt{2}}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{7}}{2\sqrt{2}}$
$x_2 = \frac{-1 - i\sqrt{7}}{2\sqrt{2}}$
Conclusion:
The solutions to the quadratic equation $\sqrt{2} x^2 + x + \sqrt{2} = 0$ are $x = \frac{-1 + i\sqrt{7}}{2\sqrt{2}}$ and $x = \frac{-1 - i\sqrt{7}}{2\sqrt{2}}$.
Question 8. $\sqrt{3}$ x2 - $\sqrt{2}$ x + 3$\sqrt{3}$ = 0
Answer:
Given:
The quadratic equation is $\sqrt{3} x^2 - \sqrt{2} x + 3\sqrt{3} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $\sqrt{3} x^2 - \sqrt{2} x + 3\sqrt{3} = 0$ with the standard form, we identify the coefficients:
$a = \sqrt{3}$
$b = -\sqrt{2}$
$c = 3\sqrt{3}$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-\sqrt{2})^2 - 4(\sqrt{3})(3\sqrt{3})$
$D = 2 - 4(3 \times (\sqrt{3})^2)$
$D = 2 - 4(3 \times 3)$
$D = 2 - 4(9)$
$D = 2 - 36$
$D = -34$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2(\sqrt{3})}$
$x = \frac{\sqrt{2} \pm \sqrt{-34}}{2\sqrt{3}}$
We know that $\sqrt{-34} = \sqrt{-1 \times 34} = \sqrt{-1} \times \sqrt{34} = i\sqrt{34}$.
Substitute this back into the expression for $x$:
$x = \frac{\sqrt{2} \pm i\sqrt{34}}{2\sqrt{3}}$
The two solutions are:
$x_1 = \frac{\sqrt{2} + i\sqrt{34}}{2\sqrt{3}}$
$x_2 = \frac{\sqrt{2} - i\sqrt{34}}{2\sqrt{3}}$
Conclusion:
The solutions to the quadratic equation $\sqrt{3} x^2 - \sqrt{2} x + 3\sqrt{3} = 0$ are $x = \frac{\sqrt{2} + i\sqrt{34}}{2\sqrt{3}}$ and $x = \frac{\sqrt{2} - i\sqrt{34}}{2\sqrt{3}}$.
Question 9. x2 + x + $\frac{1}{\sqrt{2}}$
Answer:
Given:
The quadratic equation is $x^2 + x + \frac{1}{\sqrt{2}} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $x^2 + x + \frac{1}{\sqrt{2}} = 0$.
To simplify, we can multiply the entire equation by $\sqrt{2}$ to eliminate the fraction:
$\sqrt{2}(x^2 + x + \frac{1}{\sqrt{2}}) = \sqrt{2} \times 0$
$\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$
This is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$ with the standard form, we identify the coefficients:
$a = \sqrt{2}$
$b = \sqrt{2}$
$c = 1$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (\sqrt{2})^2 - 4(\sqrt{2})(1)$
$D = 2 - 4\sqrt{2}$
Since $4\sqrt{2} > 2$, the discriminant is negative ($D < 0$), so the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(\sqrt{2}) \pm \sqrt{2 - 4\sqrt{2}}}{2(\sqrt{2})}$
$x = \frac{-\sqrt{2} \pm \sqrt{-(4\sqrt{2} - 2)}}{2\sqrt{2}}$
We know that $\sqrt{-(4\sqrt{2} - 2)} = \sqrt{-1} \times \sqrt{4\sqrt{2} - 2} = i\sqrt{4\sqrt{2} - 2}$.
Substitute this back into the expression for $x$:
$x = \frac{-\sqrt{2} \pm i\sqrt{4\sqrt{2} - 2}}{2\sqrt{2}}$
We can separate the real and imaginary parts:
$x = \frac{-\sqrt{2}}{2\sqrt{2}} \pm i \frac{\sqrt{4\sqrt{2} - 2}}{2\sqrt{2}}$
$x = -\frac{1}{2} \pm i \sqrt{\frac{4\sqrt{2} - 2}{(2\sqrt{2})^2}}$
$x = -\frac{1}{2} \pm i \sqrt{\frac{4\sqrt{2} - 2}{8}}$
$x = -\frac{1}{2} \pm i \sqrt{\frac{2(2\sqrt{2} - 1)}{8}}$
$x = -\frac{1}{2} \pm i \sqrt{\frac{2\sqrt{2} - 1}{4}}$
$x = -\frac{1}{2} \pm i \frac{\sqrt{2\sqrt{2} - 1}}{2}$
$x = \frac{-1 \pm i\sqrt{2\sqrt{2} - 1}}{2}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{2\sqrt{2} - 1}}{2}$
$x_2 = \frac{-1 - i\sqrt{2\sqrt{2} - 1}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 + x + \frac{1}{\sqrt{2}} = 0$ are $x = \frac{-1 + i\sqrt{2\sqrt{2} - 1}}{2}$ and $x = \frac{-1 - i\sqrt{2\sqrt{2} - 1}}{2}$.
Question 10. x2 + $\frac{x}{\sqrt{2}}$ + 1 = 0
Answer:
Given:
The quadratic equation is $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$.
To simplify, we can multiply the entire equation by $\sqrt{2}$ to eliminate the fraction in the coefficient of $x$:
$\sqrt{2} \left( x^2 + \frac{x}{\sqrt{2}} + 1 \right) = \sqrt{2} \times 0$
$\sqrt{2}x^2 + \sqrt{2} \cdot \frac{x}{\sqrt{2}} + \sqrt{2} \cdot 1 = 0$
$\sqrt{2}x^2 + x + \sqrt{2} = 0$
This is now a quadratic equation in the standard form $ax^2 + bx + c = 0$.
Comparing $\sqrt{2}x^2 + x + \sqrt{2} = 0$ with the standard form, we identify the coefficients:
$a = \sqrt{2}$
$b = 1$
$c = \sqrt{2}$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (1)^2 - 4(\sqrt{2})(\sqrt{2})$
$D = 1 - 4(2)$
$D = 1 - 8$
$D = -7$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(1) \pm \sqrt{-7}}{2(\sqrt{2})}$
$x = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}}$
We know that $\sqrt{-7} = \sqrt{-1 \times 7} = \sqrt{-1} \times \sqrt{7} = i\sqrt{7}$.
Substitute this back into the expression for $x$:
$x = \frac{-1 \pm i\sqrt{7}}{2\sqrt{2}}$
The two solutions are:
$x_1 = \frac{-1 + i\sqrt{7}}{2\sqrt{2}}$
$x_2 = \frac{-1 - i\sqrt{7}}{2\sqrt{2}}$
Conclusion:
The solutions to the quadratic equation $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$ are $x = \frac{-1 + i\sqrt{7}}{2\sqrt{2}}$ and $x = \frac{-1 - i\sqrt{7}}{2\sqrt{2}}$.
Example 12 to 16 - Miscellaneous Examples
Example 12: Find the conjugate of $\frac{(3 \;-\; 2i) (2 \;+\; 3i)} {(1 \;+\; 2i) (2 \;-\; i)}$
Answer:
Given:
The complex number is $Z = \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}$.
To Find:
The conjugate of the complex number $Z$, denoted as $\bar{Z}$.
Solution:
First, let's simplify the numerator and the denominator of the expression.
Numerator: $(3 - 2i)(2 + 3i)$
$(3 - 2i)(2 + 3i) = 3(2) + 3(3i) - 2i(2) - 2i(3i)$
$ = 6 + 9i - 4i - 6i^2$
$ = 6 + (9 - 4)i - 6(-1)$ (Since $i^2 = -1$)
$ = 6 + 5i + 6$
$ = 12 + 5i$
Denominator: $(1 + 2i)(2 - i)$
$(1 + 2i)(2 - i) = 1(2) + 1(-i) + 2i(2) + 2i(-i)$
$ = 2 - i + 4i - 2i^2$
$ = 2 + (-1 + 4)i - 2(-1)$ (Since $i^2 = -1$)
$ = 2 + 3i + 2$
$ = 4 + 3i$
Now, substitute the simplified numerator and denominator back into the expression for $Z$:
$Z = \frac{12 + 5i}{4 + 3i}$
To express $Z$ in the standard form $a + bi$, multiply the numerator and denominator by the conjugate of the denominator, which is $4 - 3i$.
$Z = \frac{12 + 5i}{4 + 3i} \times \frac{4 - 3i}{4 - 3i}$
$Z = \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)}$
Simplify the new numerator:
$(12 + 5i)(4 - 3i) = 12(4) + 12(-3i) + 5i(4) + 5i(-3i)$
$ = 48 - 36i + 20i - 15i^2$
$ = 48 + (-36 + 20)i - 15(-1)$
$ = 48 - 16i + 15$
$ = 63 - 16i$
Simplify the new denominator using $(a + ib)(a - ib) = a^2 + b^2$:
$(4 + 3i)(4 - 3i) = (4)^2 + (3)^2 = 16 + 9 = 25$
Substitute these back into the expression for $Z$:
$Z = \frac{63 - 16i}{25}$
Write $Z$ in the standard form $a + bi$:
$Z = \frac{63}{25} - \frac{16}{25}i$
Now, find the conjugate of $Z$. The conjugate $\bar{Z}$ of a complex number $Z = a + bi$ is $\bar{Z} = a - bi$.
$\bar{Z} = \frac{63}{25} - \left( -\frac{16}{25}i \right)$
$\bar{Z} = \frac{63}{25} + \frac{16}{25}i$
Conclusion:
The conjugate of the complex number $\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}$ is $\frac{63}{25} + \frac{16}{25}i$.
Example 13: Find the modulus and argument of the complex numbers:
(i) $\frac{1 \;+\; i}{1 \;-\; i}$
(ii) $\frac{1}{1 \;+\; i}$
Answer:
(i)
Given:
The complex number is $z_1 = \frac{1 + i}{1 - i}$.
To Find:
The modulus and argument of $z_1$.
Solution:
First, we simplify the complex number $z_1$ into the standard form $x + iy$.
Multiply the numerator and denominator by the conjugate of the denominator $(1 + i)$:
$z_1 = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}$
$z_1 = \frac{(1 + i)^2}{(1 - i)(1 + i)}$
Numerator: $(1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i$.
Denominator: $(1 - i)(1 + i) = 1^2 + 1^2 = 1 + 1 = 2$.
So, $z_1 = \frac{2i}{2} = i$.
In the standard form $z_1 = x + iy$, we have $z_1 = 0 + 1i$.
Thus, $x = 0$ and $y = 1$.
Modulus:
The modulus $r_1 = |z_1|$ is:
$r_1 = \sqrt{x^2 + y^2} = \sqrt{0^2 + 1^2} = \sqrt{1} = 1$.
Argument:
Let $\theta_1$ be the argument. It satisfies:
$\cos \theta_1 = \frac{x}{r_1} = \frac{0}{1} = 0$
$\sin \theta_1 = \frac{y}{r_1} = \frac{1}{1} = 1$
The angle $\theta_1$ (principal value in $(-\pi, \pi]$) for which $\cos \theta_1 = 0$ and $\sin \theta_1 = 1$ is $\theta_1 = \frac{\pi}{2}$.
Conclusion (i):
For $z_1 = \frac{1 + i}{1 - i}$:
- Modulus is $1$.
- Argument is $\frac{\pi}{2}$.
(ii)
Given:
The complex number is $z_2 = \frac{1}{1 + i}$.
To Find:
The modulus and argument of $z_2$.
Solution:
First, we simplify the complex number $z_2$ into the standard form $x + iy$.
Multiply the numerator and denominator by the conjugate of the denominator $(1 - i)$:
$z_2 = \frac{1}{1 + i} \times \frac{1 - i}{1 - i}$
$z_2 = \frac{1 - i}{(1 + i)(1 - i)}$
Numerator: $1 - i$.
Denominator: $(1 + i)(1 - i) = 1^2 + 1^2 = 1 + 1 = 2$.
So, $z_2 = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i$.
In the standard form $z_2 = x + iy$, we have $x = \frac{1}{2}$ and $y = -\frac{1}{2}$.
Modulus:
The modulus $r_2 = |z_2|$ is:
$r_2 = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}$
$r_2 = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$.
Argument:
Let $\theta_2$ be the argument. It satisfies:
$\cos \theta_2 = \frac{x}{r_2} = \frac{1/2}{1/\sqrt{2}} = \frac{\sqrt{2}}{2}$
$\sin \theta_2 = \frac{y}{r_2} = \frac{-1/2}{1/\sqrt{2}} = -\frac{\sqrt{2}}{2}$
Since $\cos \theta_2 > 0$ and $\sin \theta_2 < 0$, the angle $\theta_2$ lies in the fourth quadrant.
Let $\alpha$ be the reference angle. $\tan \alpha = \left|\frac{y}{x}\right| = \left|\frac{-1/2}{1/2}\right| = |-1| = 1$. So, $\alpha = \frac{\pi}{4}$.
For the fourth quadrant, the principal argument is $\theta_2 = -\alpha$.
$\theta_2 = -\frac{\pi}{4}$.
Conclusion (ii):
For $z_2 = \frac{1}{1 + i}$:
- Modulus is $\frac{1}{\sqrt{2}}$ (or $\frac{\sqrt{2}}{2}$).
- Argument is $-\frac{\pi}{4}$.
Example 14: If $x + iy = \frac{a \;+\; ib}{a \;-\; ib}$, prove that x2 + y2 = 1
Answer:
Given:
The relation between complex numbers:
$x + iy = \frac{a + ib}{a - ib}$
...(i)
where $x, y, a, b$ are real numbers, and it is assumed that $a - ib \neq 0$ (i.e., $a$ and $b$ are not both zero).
To Prove:
$x^2 + y^2 = 1$
Proof:
We are given the equation:
$x + iy = \frac{a + ib}{a - ib}$
Taking the modulus on both sides of equation (i), we get:
$|x + iy| = \left| \frac{a + ib}{a - ib} \right|$
Using the property of modulus $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$, we have:
$|x + iy| = \frac{|a + ib|}{|a - ib|}$
Recall that the modulus of a complex number $p + iq$ is $|p + iq| = \sqrt{p^2 + q^2}$.
Therefore:
$|x + iy| = \sqrt{x^2 + y^2}$
$|a + ib| = \sqrt{a^2 + b^2}$
$|a - ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$
Substituting these values into the modulus equation:
$\sqrt{x^2 + y^2} = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}$
Since $a$ and $b$ are not both zero, $\sqrt{a^2 + b^2} \neq 0$. Thus, the fraction on the right side simplifies to 1:
$\sqrt{x^2 + y^2} = 1$
Squaring both sides of the equation:
$(\sqrt{x^2 + y^2})^2 = 1^2$
$x^2 + y^2 = 1$
Hence, it is proved that $x^2 + y^2 = 1$.
Example 15: Find real θ such that
$\frac{3 \;+\; 2 i sin θ}{1 \;-\; 2i sin θ}$ is purely real.
Answer:
Given:
The complex number $z = \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}$.
The condition that $z$ is purely real.
To Find:
The real values of $\theta$ that satisfy the condition.
Solution:
Let the given complex number be $z$.
$z = \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}$
To determine when $z$ is purely real, we first express it in the standard form $a + bi$. We multiply the numerator and the denominator by the conjugate of the denominator, which is $1 + 2i \sin \theta$.
$z = \frac{(3 + 2i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)}$
Simplify the numerator:
Numerator $= 3(1) + 3(2i \sin \theta) + (2i \sin \theta)(1) + (2i \sin \theta)(2i \sin \theta)$
$ = 3 + 6i \sin \theta + 2i \sin \theta + 4i^2 \sin^2 \theta$
$ = 3 + (6 + 2)i \sin \theta + 4(-1) \sin^2 \theta$ (Since $i^2 = -1$)
$ = 3 + 8i \sin \theta - 4 \sin^2 \theta$
$ = (3 - 4 \sin^2 \theta) + i(8 \sin \theta)$
Simplify the denominator using the property $(a - ib)(a + ib) = a^2 + b^2$:
Denominator $= (1)^2 + (2 \sin \theta)^2 = 1 + 4 \sin^2 \theta$
Now substitute the simplified numerator and denominator back into the expression for $z$:
$z = \frac{(3 - 4 \sin^2 \theta) + i(8 \sin \theta)}{1 + 4 \sin^2 \theta}$
Separate the real and imaginary parts:
$z = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} + i \left( \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} \right)$
A complex number is purely real if its imaginary part is zero.
Set the imaginary part to zero:
$\frac{8 \sin \theta}{1 + 4 \sin^2 \theta} = 0$
The denominator $1 + 4 \sin^2 \theta$ is always greater than or equal to 1 (since $\sin^2 \theta \ge 0$), so it is never zero. Thus, the fraction is zero if and only if the numerator is zero:
$8 \sin \theta = 0$
$\sin \theta = 0$
The general solution for $\sin \theta = 0$ is given by:
$\theta = n\pi$, where $n$ is any integer ($n \in \mathbb{Z}$).
Conclusion:
The complex number $\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}$ is purely real when $\theta = n\pi$, where $n$ is any integer.
Example 16: Convert the complex number $z = \frac{i \;-\; 1}{cos \frac{\pi}{3} \;+\; i\sin \frac{\pi}{3}}$ in the polar form.
Answer:
Given:
The complex number $z = \frac{i - 1}{\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}}$.
To Find:
Convert the complex number $z$ into its polar form $r(\cos \theta + i \sin \theta)$.
Solution:
Let the numerator be $z_1 = i - 1 = -1 + i$.
Let the denominator be $z_2 = \cos \frac{\pi}{3} + i\sin \frac{\pi}{3}$.
So, $z = \frac{z_1}{z_2}$.
We will first convert $z_1$ and $z_2$ into their polar forms.
Polar form of $z_1 = -1 + i$:
Comparing with $x + iy$, we have $x = -1$ and $y = 1$.
Modulus $r_1 = |z_1| = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2}$.
Argument $\theta_1$: Since $x < 0$ and $y > 0$, $z_1$ lies in the second quadrant.
$\cos \theta_1 = \frac{x}{r_1} = \frac{-1}{\sqrt{2}}$
$\sin \theta_1 = \frac{y}{r_1} = \frac{1}{\sqrt{2}}$
The reference angle $\alpha = \tan^{-1}\left|\frac{y}{x}\right| = \tan^{-1}\left|\frac{1}{-1}\right| = \tan^{-1}(1) = \frac{\pi}{4}$.
For the second quadrant, the argument $\theta_1 = \pi - \alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.
Thus, the polar form of $z_1$ is $z_1 = \sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$.
Polar form of $z_2 = \cos \frac{\pi}{3} + i\sin \frac{\pi}{3}$:
The denominator $z_2$ is already in polar form.
Modulus $r_2 = |z_2| = 1$.
Argument $\theta_2 = \frac{\pi}{3}$.
Polar form of $z = \frac{z_1}{z_2}$:
Using the division property for complex numbers in polar form:
$z = \frac{r_1(\cos \theta_1 + i \sin \theta_1)}{r_2(\cos \theta_2 + i \sin \theta_2)} = \frac{r_1}{r_2} \left( \cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$
The modulus of $z$ is $r = \frac{r_1}{r_2} = \frac{\sqrt{2}}{1} = \sqrt{2}$.
The argument of $z$ is $\theta = \theta_1 - \theta_2 = \frac{3\pi}{4} - \frac{\pi}{3}$.
$\theta = \frac{3 \times 3 \pi - 4 \times \pi}{12} = \frac{9\pi - 4\pi}{12} = \frac{5\pi}{12}$.
Therefore, the polar form of $z$ is:
$z = \sqrt{2} \left( \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$
Conclusion:
The polar form of the complex number $z = \frac{i - 1}{\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}}$ is $\sqrt{2} \left( \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$.
Miscellaneous Exercise on Chapter 5
Question 1. Evaluate: $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$
Answer:
Given:
The expression to evaluate is $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$.
To Find:
The value of the given expression.
Solution:
We first simplify the terms inside the bracket.
Simplify $i^{18}$:
The powers of $i$ cycle every 4 terms: $i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$.
To find $i^{18}$, divide 18 by 4:
$18 = 4 \times 4 + 2$
The remainder is 2. Therefore:
$i^{18} = i^2 = -1$
Simplify $\left( \frac{1}{i} \right)^{25}$:
First, simplify $\frac{1}{i}$:
$\frac{1}{i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i$
Now, calculate $(-i)^{25}$:
$(-i)^{25} = (-1)^{25} \times (i)^{25} = -1 \times i^{25}$
To find $i^{25}$, divide 25 by 4:
$25 = 4 \times 6 + 1$
The remainder is 1. Therefore:
$i^{25} = i^1 = i$
So, $(-i)^{25} = -1 \times i = -i$.
Substitute back into the bracket:
$i^{18} + \left( \frac{1}{i} \right)^{25} = -1 + (-i) = -1 - i$
Calculate the cube of the result:
We need to evaluate $(-1 - i)^3$.
$(-1 - i)^3 = [-(1 + i)]^3 = (-1)^3 (1 + i)^3 = -(1 + i)^3$
Expand $(1 + i)^3$ using the formula $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$:
$(1 + i)^3 = (1)^3 + 3(1)^2(i) + 3(1)(i)^2 + (i)^3$
$ = 1 + 3(1)i + 3i^2 + i^3$
$ = 1 + 3i + 3(-1) + (-i)$ (Since $i^2 = -1$ and $i^3 = -i$)
$ = 1 + 3i - 3 - i$
$ = (1 - 3) + (3i - i)$
$ = -2 + 2i$
Now, apply the negative sign:
$-(1 + i)^3 = -(-2 + 2i) = 2 - 2i$
Conclusion:
The value of the expression $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$ is $2 - 2i$.
Question 2. For any two complex numbers z1 and z2 , prove that
Re (z1 z2 ) = Re z1 Re z2 – Imz1 Imz2
Answer:
Given:
Two arbitrary complex numbers $z_1$ and $z_2$.
To Prove:
Re($z_1 z_2$) = Re($z_1$) Re($z_2$) – Im($z_1$) Im($z_2$)
Proof:
Let the two complex numbers be represented in their standard forms:
$z_1 = a + ib$
$z_2 = c + id$
Where $a, b, c, d$ are real numbers.
From these definitions, we can identify the real and imaginary parts:
Re($z_1$) = $a$
Im($z_1$) = $b$
Re($z_2$) = $c$
Im($z_2$) = $d$
Now, let's calculate the product $z_1 z_2$:
$z_1 z_2 = (a + ib)(c + id)$
$z_1 z_2 = a(c + id) + ib(c + id)$
$z_1 z_2 = ac + iad + ibc + i^2bd$
$z_1 z_2 = ac + iad + ibc - bd$ (Since $i^2 = -1$)
Group the real and imaginary terms:
$z_1 z_2 = (ac - bd) + i(ad + bc)$
The real part of the product $z_1 z_2$ is the term without $i$:
Re($z_1 z_2$) = $ac - bd$
...(i)
Now, let's evaluate the right-hand side (RHS) of the equation we need to prove:
RHS = Re($z_1$) Re($z_2$) – Im($z_1$) Im($z_2$)
RHS = $(a)(c) - (b)(d)$
RHS = $ac - bd$
...(ii)
Comparing equations (i) and (ii), we see that:
Re($z_1 z_2$) = Re($z_1$) Re($z_2$) – Im($z_1$) Im($z_2$)
Hence, the statement is proved.
Question 3. Reduce $\left( \frac{1}{1 \;-\; 4i} -\frac{2}{1 \;+\; i}\right) \left( \frac{3\;-\;4i}{5\;+\;i} \right)$ to the standard form .
Answer:
Given:
The complex expression $Z = \left( \frac{1}{1 - 4i} -\frac{2}{1 + i}\right) \left( \frac{3 - 4i}{5 + i} \right)$.
To Find:
Reduce the given expression to the standard form $a + bi$.
Solution:
Let's simplify the expression step by step.
First, simplify the term inside the first parenthesis:
$P_1 = \frac{1}{1 - 4i} - \frac{2}{1 + i}$
Find a common denominator: $(1 - 4i)(1 + i)$.
$P_1 = \frac{1(1 + i) - 2(1 - 4i)}{(1 - 4i)(1 + i)}$
Simplify the numerator:
$1 + i - 2 + 8i = (1 - 2) + (i + 8i) = -1 + 9i$
Simplify the denominator:
$(1 - 4i)(1 + i) = 1(1) + 1(i) - 4i(1) - 4i(i) = 1 + i - 4i - 4i^2$
$ = 1 - 3i - 4(-1) = 1 - 3i + 4 = 5 - 3i$
So, the first part is:
$P_1 = \frac{-1 + 9i}{5 - 3i}$
The second part of the expression is:
$P_2 = \frac{3 - 4i}{5 + i}$
Now multiply the two parts $P_1$ and $P_2$:
$Z = P_1 \times P_2 = \left( \frac{-1 + 9i}{5 - 3i} \right) \left( \frac{3 - 4i}{5 + i} \right)$
$Z = \frac{(-1 + 9i)(3 - 4i)}{(5 - 3i)(5 + i)}$
Simplify the numerator of $Z$:
$(-1 + 9i)(3 - 4i) = -1(3) - 1(-4i) + 9i(3) + 9i(-4i)$
$ = -3 + 4i + 27i - 36i^2$
$ = -3 + 31i - 36(-1)$
$ = -3 + 31i + 36 = 33 + 31i$
Simplify the denominator of $Z$:
$(5 - 3i)(5 + i) = 5(5) + 5(i) - 3i(5) - 3i(i)$
$ = 25 + 5i - 15i - 3i^2$
$ = 25 - 10i - 3(-1)$
$ = 25 - 10i + 3 = 28 - 10i$
So, the expression becomes:
$Z = \frac{33 + 31i}{28 - 10i}$
To reduce this to the standard form $a + bi$, multiply the numerator and denominator by the conjugate of the denominator, which is $28 + 10i$.
$Z = \frac{33 + 31i}{28 - 10i} \times \frac{28 + 10i}{28 + 10i}$
$Z = \frac{(33 + 31i)(28 + 10i)}{(28 - 10i)(28 + 10i)}$
Simplify the numerator:
$(33 + 31i)(28 + 10i) = 33(28) + 33(10i) + 31i(28) + 31i(10i)$
$ = 924 + 330i + 868i + 310i^2$
$ = 924 + 1198i + 310(-1)$
$ = 924 + 1198i - 310 = 614 + 1198i$
Simplify the denominator using $(a - ib)(a + ib) = a^2 + b^2$:
$(28 - 10i)(28 + 10i) = (28)^2 + (10)^2 = 784 + 100 = 884$
Substitute these back into the expression for $Z$:
$Z = \frac{614 + 1198i}{884}$
Separate the real and imaginary parts and simplify the fractions:
$Z = \frac{614}{884} + i \frac{1198}{884}$
$Z = \frac{\cancel{614}^{307}}{\cancel{884}_{442}} + i \frac{\cancel{1198}^{599}}{\cancel{884}_{442}}$
$Z = \frac{307}{442} + i \frac{599}{442}$
Conclusion:
The standard form of the given expression is $\frac{307}{442} + i \frac{599}{442}$.
Here, $a = \frac{307}{442}$ and $b = \frac{599}{442}$.
Question 4. If $x - iy = \sqrt{\frac{a \;-\; ib}{c \;-\; id}}$ prove that (x2 + y2)2 = $\frac{a^{2}\;+\;b^{2}}{c^{2}\;+\;d^{2}}$
Answer:
Given:
The relation between complex numbers:
$x - iy = \sqrt{\frac{a - ib}{c - id}}$
...(i)
where $x, y, a, b, c, d$ are real numbers, and $c - id \neq 0$.
To Prove:
$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
Proof:
We start with the given equation:
$x - iy = \sqrt{\frac{a - ib}{c - id}}$
Taking the modulus on both sides of equation (i):
$|x - iy| = \left| \sqrt{\frac{a - ib}{c - id}} \right|$
Using the properties of modulus, $|z^n| = |z|^n$ and $|\sqrt{z}| = \sqrt{|z|}$ (for the principal square root):
$|x - iy| = \sqrt{\left| \frac{a - ib}{c - id} \right|}$
Using the property $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$:
$|x - iy| = \sqrt{\frac{|a - ib|}{|c - id|}}$
Recall that the modulus of a complex number $p + iq$ is $|p + iq| = \sqrt{p^2 + q^2}$. Also, $|p - iq| = \sqrt{p^2 + (-q)^2} = \sqrt{p^2 + q^2}$.
Therefore:
$|x - iy| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2}$
$|a - ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$
$|c - id| = \sqrt{c^2 + (-d)^2} = \sqrt{c^2 + d^2}$
Substitute these values back into the modulus equation:
$\sqrt{x^2 + y^2} = \sqrt{\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}}$
Squaring both sides:
$(\sqrt{x^2 + y^2})^2 = \left( \sqrt{\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}} \right)^2$
$x^2 + y^2 = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}$
Squaring both sides again:
$(x^2 + y^2)^2 = \left( \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}} \right)^2$
$(x^2 + y^2)^2 = \frac{(\sqrt{a^2 + b^2})^2}{(\sqrt{c^2 + d^2})^2}$
$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
Hence, the statement is proved.
Alternate Proof (Using Conjugates):
Given:
$x - iy = \sqrt{\frac{a - ib}{c - id}}$
...(1)
Taking the conjugate of both sides:
$\overline{x - iy} = \overline{\sqrt{\frac{a - ib}{c - id}}}$
$x + iy = \sqrt{\overline{\left(\frac{a - ib}{c - id}\right)}}$
$x + iy = \sqrt{\frac{\overline{a - ib}}{\overline{c - id}}}$
$x + iy = \sqrt{\frac{a + ib}{c + id}}$
...(2)
Multiply equation (1) by equation (2):
$(x - iy)(x + iy) = \sqrt{\frac{a - ib}{c - id}} \times \sqrt{\frac{a + ib}{c + id}}$
$x^2 - (iy)^2 = \sqrt{\frac{(a - ib)(a + ib)}{(c - id)(c + id)}}$
$x^2 - i^2y^2 = \sqrt{\frac{a^2 - (ib)^2}{c^2 - (id)^2}}$
$x^2 - (-1)y^2 = \sqrt{\frac{a^2 - i^2b^2}{c^2 - i^2d^2}}$
$x^2 + y^2 = \sqrt{\frac{a^2 - (-1)b^2}{c^2 - (-1)d^2}}$
$x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$
Squaring both sides:
$(x^2 + y^2)^2 = \left( \sqrt{\frac{a^2 + b^2}{c^2 + d^2}} \right)^2$
$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
Hence, proved.
Question 5. Convert the following in the polar form:
(i) $\frac{1\;+\;7i}{(2\;-\;i)^{2}}$
(ii) $\frac{1 \;+\; 3i}{1 \;-\; 2i}$
Answer:
(i)
Given:
The complex number $z_1 = \frac{1 + 7i}{(2 - i)^2}$.
To Find:
Convert the complex number $z_1$ into its polar form $r(\cos \theta + i \sin \theta)$.
Solution:
First, simplify the denominator:
$(2 - i)^2 = 2^2 - 2(2)(i) + i^2 = 4 - 4i - 1 = 3 - 4i$.
So, the complex number is:
$z_1 = \frac{1 + 7i}{3 - 4i}$
To convert $z_1$ to the standard form $x + iy$, multiply the numerator and denominator by the conjugate of the denominator, which is $3 + 4i$.
$z_1 = \frac{1 + 7i}{3 - 4i} \times \frac{3 + 4i}{3 + 4i} = \frac{(1 + 7i)(3 + 4i)}{(3 - 4i)(3 + 4i)}$
Numerator: $(1 + 7i)(3 + 4i) = 1(3) + 1(4i) + 7i(3) + 7i(4i)$
$ = 3 + 4i + 21i + 28i^2 = 3 + 25i - 28 = -25 + 25i$.
Denominator: $(3 - 4i)(3 + 4i) = 3^2 + 4^2 = 9 + 16 = 25$.
Substitute back:
$z_1 = \frac{-25 + 25i}{25} = \frac{-25}{25} + \frac{25i}{25} = -1 + i$.
Now, convert $z_1 = -1 + i$ to polar form.
Comparing with $x + iy$, we have $x = -1$ and $y = 1$.
Modulus $r$:
$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$.
Argument $\theta$:
The complex number lies in the second quadrant since $x < 0$ and $y > 0$.
$\cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{1}{\sqrt{2}}$
The reference angle $\alpha = \tan^{-1}\left|\frac{y}{x}\right| = \tan^{-1}\left|\frac{1}{-1}\right| = \tan^{-1}(1) = \frac{\pi}{4}$.
For the second quadrant, the principal argument is $\theta = \pi - \alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.
Polar Form:
The polar form is $z_1 = r(\cos \theta + i \sin \theta)$.
$z_1 = \sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$.
(ii)
Given:
The complex number $z_2 = \frac{1 + 3i}{1 - 2i}$.
To Find:
Convert the complex number $z_2$ into its polar form $r(\cos \theta + i \sin \theta)$.
Solution:
To convert $z_2$ to the standard form $x + iy$, multiply the numerator and denominator by the conjugate of the denominator, which is $1 + 2i$.
$z_2 = \frac{1 + 3i}{1 - 2i} \times \frac{1 + 2i}{1 + 2i} = \frac{(1 + 3i)(1 + 2i)}{(1 - 2i)(1 + 2i)}$
Numerator: $(1 + 3i)(1 + 2i) = 1(1) + 1(2i) + 3i(1) + 3i(2i)$
$ = 1 + 2i + 3i + 6i^2 = 1 + 5i - 6 = -5 + 5i$.
Denominator: $(1 - 2i)(1 + 2i) = 1^2 + 2^2 = 1 + 4 = 5$.
Substitute back:
$z_2 = \frac{-5 + 5i}{5} = \frac{-5}{5} + \frac{5i}{5} = -1 + i$.
Now, convert $z_2 = -1 + i$ to polar form.
Comparing with $x + iy$, we have $x = -1$ and $y = 1$.
Modulus $r$:
$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$.
Argument $\theta$:
The complex number lies in the second quadrant since $x < 0$ and $y > 0$.
$\cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{1}{\sqrt{2}}$
The reference angle $\alpha = \tan^{-1}\left|\frac{y}{x}\right| = \tan^{-1}\left|\frac{1}{-1}\right| = \tan^{-1}(1) = \frac{\pi}{4}$.
For the second quadrant, the principal argument is $\theta = \pi - \alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.
Polar Form:
The polar form is $z_2 = r(\cos \theta + i \sin \theta)$.
$z_2 = \sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$.
Conclusion:
(i) The polar form of $\frac{1 + 7i}{(2 - i)^2}$ is $\sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$.
(ii) The polar form of $\frac{1 + 3i}{1 - 2i}$ is $\sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$.
Question 6. 3x2 - 4x + $\frac{20}{3}$ = 0
Answer:
Given:
The quadratic equation is $3x^2 - 4x + \frac{20}{3} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $3x^2 - 4x + \frac{20}{3} = 0$.
To eliminate the fraction, we can multiply the entire equation by 3:
$3 \left( 3x^2 - 4x + \frac{20}{3} \right) = 3 \times 0$
$9x^2 - 12x + 20 = 0$
This is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $9x^2 - 12x + 20 = 0$ with the standard form, we identify the coefficients:
$a = 9$
$b = -12$
$c = 20$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-12)^2 - 4(9)(20)$
$D = 144 - 720$
$D = -576$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-12) \pm \sqrt{-576}}{2(9)}$
$x = \frac{12 \pm \sqrt{-576}}{18}$
We simplify $\sqrt{-576}$:
$\sqrt{-576} = \sqrt{-1 \times 576} = \sqrt{-1} \times \sqrt{576} = i \times 24 = 24i$
Substitute this back into the expression for $x$:
$x = \frac{12 \pm 24i}{18}$
Separate the real and imaginary parts and simplify:
$x = \frac{12}{18} \pm \frac{24}{18}i$
$x = \frac{2 \times \cancel{6}}{3 \times \cancel{6}} \pm \frac{4 \times \cancel{6}}{3 \times \cancel{6}}i$
$x = \frac{2}{3} \pm \frac{4}{3}i$
The two solutions are:
$x_1 = \frac{2}{3} + \frac{4}{3}i$
$x_2 = \frac{2}{3} - \frac{4}{3}i$
Conclusion:
The solutions to the quadratic equation $3x^2 - 4x + \frac{20}{3} = 0$ are $x = \frac{2}{3} + \frac{4}{3}i$ and $x = \frac{2}{3} - \frac{4}{3}i$.
Question 7. x2 - 2x + $\frac{3}{2}$ = 0
Answer:
Given:
The quadratic equation is $x^2 - 2x + \frac{3}{2} = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $x^2 - 2x + \frac{3}{2} = 0$.
To eliminate the fraction, we can multiply the entire equation by 2:
$2 \left( x^2 - 2x + \frac{3}{2} \right) = 2 \times 0$
$2x^2 - 4x + 3 = 0$
This is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $2x^2 - 4x + 3 = 0$ with the standard form, we identify the coefficients:
$a = 2$
$b = -4$
$c = 3$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-4)^2 - 4(2)(3)$
$D = 16 - 24$
$D = -8$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-4) \pm \sqrt{-8}}{2(2)}$
$x = \frac{4 \pm \sqrt{-8}}{4}$
We simplify $\sqrt{-8}$:
$\sqrt{-8} = \sqrt{-1 \times 8} = \sqrt{-1} \times \sqrt{8} = i \sqrt{4 \times 2} = i (2\sqrt{2}) = 2i\sqrt{2}$
Substitute this back into the expression for $x$:
$x = \frac{4 \pm 2i\sqrt{2}}{4}$
Separate the real and imaginary parts and simplify:
$x = \frac{4}{4} \pm \frac{2i\sqrt{2}}{4}$
$x = 1 \pm i \frac{\cancel{2}\sqrt{2}}{\cancel{4}_2}$
$x = 1 \pm i \frac{\sqrt{2}}{2}$
The two solutions are:
$x_1 = 1 + i \frac{\sqrt{2}}{2}$
$x_2 = 1 - i \frac{\sqrt{2}}{2}$
Conclusion:
The solutions to the quadratic equation $x^2 - 2x + \frac{3}{2} = 0$ are $x = 1 + i \frac{\sqrt{2}}{2}$ and $x = 1 - i \frac{\sqrt{2}}{2}$.
Question 8. 27x2 - 10x + 1 = 0
Answer:
Given:
The quadratic equation is $27x^2 - 10x + 1 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $27x^2 - 10x + 1 = 0$.
This is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $27x^2 - 10x + 1 = 0$ with the standard form, we identify the coefficients:
$a = 27$
$b = -10$
$c = 1$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-10)^2 - 4(27)(1)$
$D = 100 - 108$
$D = -8$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-10) \pm \sqrt{-8}}{2(27)}$
$x = \frac{10 \pm \sqrt{-8}}{54}$
We simplify $\sqrt{-8}$:
$\sqrt{-8} = \sqrt{-1 \times 8} = \sqrt{-1} \times \sqrt{8} = i \sqrt{4 \times 2} = i (2\sqrt{2}) = 2i\sqrt{2}$
Substitute this back into the expression for $x$:
$x = \frac{10 \pm 2i\sqrt{2}}{54}$
Factor out 2 from the numerator and simplify the fraction:
$x = \frac{2(5 \pm i\sqrt{2})}{54}$
$x = \frac{\cancel{2}(5 \pm i\sqrt{2})}{\cancel{54}_{27}}$
$x = \frac{5 \pm i\sqrt{2}}{27}$
The two solutions are:
$x_1 = \frac{5 + i\sqrt{2}}{27}$
$x_2 = \frac{5 - i\sqrt{2}}{27}$
Conclusion:
The solutions to the quadratic equation $27x^2 - 10x + 1 = 0$ are $x = \frac{5 + i\sqrt{2}}{27}$ and $x = \frac{5 - i\sqrt{2}}{27}$.
Question 9. 21x2 - 28x + 10 = 0
Answer:
Given:
The quadratic equation is $21x^2 - 28x + 10 = 0$.
To Find:
The solution(s) for $x$.
Solution:
The given equation is $21x^2 - 28x + 10 = 0$.
This is a quadratic equation of the form $ax^2 + bx + c = 0$.
Comparing $21x^2 - 28x + 10 = 0$ with the standard form, we identify the coefficients:
$a = 21$
$b = -28$
$c = 10$
We use the quadratic formula to find the solutions for $x$:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
First, calculate the discriminant, $D = b^2 - 4ac$:
$D = (-28)^2 - 4(21)(10)$
$D = 784 - 840$
$D = -56$
Since the discriminant is negative ($D < 0$), the solutions will be complex.
Now substitute the values of $a$, $b$, and the discriminant $D$ into the quadratic formula:
$x = \frac{-(-28) \pm \sqrt{-56}}{2(21)}$
$x = \frac{28 \pm \sqrt{-56}}{42}$
We simplify $\sqrt{-56}$:
$\sqrt{-56} = \sqrt{-1 \times 56} = \sqrt{-1} \times \sqrt{4 \times 14} = i \times 2\sqrt{14} = 2i\sqrt{14}$
Substitute this back into the expression for $x$:
$x = \frac{28 \pm 2i\sqrt{14}}{42}$
Factor out 2 from the numerator and simplify the fraction:
$x = \frac{2(14 \pm i\sqrt{14})}{42}$
$x = \frac{\cancel{2}(14 \pm i\sqrt{14})}{\cancel{42}_{21}}$
$x = \frac{14 \pm i\sqrt{14}}{21}$
We can separate the real and imaginary parts:
$x = \frac{14}{21} \pm i \frac{\sqrt{14}}{21}$
$x = \frac{2 \times \cancel{7}}{3 \times \cancel{7}} \pm i \frac{\sqrt{14}}{21}$
$x = \frac{2}{3} \pm i \frac{\sqrt{14}}{21}$
The two solutions are:
$x_1 = \frac{14 + i\sqrt{14}}{21}$ or $x_1 = \frac{2}{3} + i \frac{\sqrt{14}}{21}$
$x_2 = \frac{14 - i\sqrt{14}}{21}$ or $x_2 = \frac{2}{3} - i \frac{\sqrt{14}}{21}$
Conclusion:
The solutions to the quadratic equation $21x^2 - 28x + 10 = 0$ are $x = \frac{14 + i\sqrt{14}}{21}$ and $x = \frac{14 - i\sqrt{14}}{21}$ (or equivalently, $x = \frac{2}{3} \pm i \frac{\sqrt{14}}{21}$).
Question 10. If $z_1 = 2 \;–\; i$, $z_2 = 1 \;+\; i$, find $\left| \frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} \right|$
Answer:
Given:
The complex numbers $z_1 = 2 - i$ and $z_2 = 1 + i$.
To Find:
The value of the modulus $\left| \frac{z_{1} + z_{2} + 1}{z_{1} - z_{2} + 1} \right|$.
Solution:
Let the expression be $Z = \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1}$. We need to find $|Z|$.
First, calculate the numerator $N = z_1 + z_2 + 1$:
$N = (2 - i) + (1 + i) + 1$
$N = (2 + 1 + 1) + (-i + i)$
$N = 4 + 0i = 4$
Next, calculate the denominator $D = z_1 - z_2 + 1$:
$D = (2 - i) - (1 + i) + 1$
$D = 2 - i - 1 - i + 1$
$D = (2 - 1 + 1) + (-i - i)$
$D = 2 - 2i$
Now substitute the numerator and denominator back into the expression for $Z$:
$Z = \frac{4}{2 - 2i}$
We need to find the modulus of $Z$, i.e., $|Z| = \left| \frac{4}{2 - 2i} \right|$.
Using the property of modulus $\left| \frac{z_a}{z_b} \right| = \frac{|z_a|}{|z_b|}$:
$|Z| = \frac{|4|}{|2 - 2i|}$
The modulus of the numerator is $|4| = \sqrt{4^2 + 0^2} = 4$.
The modulus of the denominator is $|2 - 2i| = \sqrt{(2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8}$.
$\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}$.
So, the modulus of $Z$ is:
$|Z| = \frac{4}{2\sqrt{2}}$
$|Z| = \frac{2}{\sqrt{2}}$
Rationalize the denominator:
$|Z| = \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$
Conclusion:
The value of $\left| \frac{z_{1} + z_{2} + 1}{z_{1} - z_{2} + 1} \right|$ is $\sqrt{2}$.
Question 11. If $a + ib = \frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}$ prove that $a^2 + b^2 = \frac{(x^2\;+\;i)^{2}}{(2x^{2}\;+\;1)^2}$
Answer:
Given:
The relation between complex numbers:
$a + ib = \frac{(x + i)^2}{2x^2 + 1}$
...(i)
where $a, b, x$ are real numbers.
To Prove:
$a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^2 + 1)^2}$
Proof:
We start with the given equation:
$a + ib = \frac{(x + i)^2}{2x^2 + 1}$
Take the modulus of both sides of equation (i):
$|a + ib| = \left| \frac{(x + i)^2}{2x^2 + 1} \right|$
Using the properties of modulus: $|z_1 / z_2| = |z_1| / |z_2|$ and $|z^n| = |z|^n$:
$|a + ib| = \frac{|(x + i)^2|}{|2x^2 + 1|}$
$|a + ib| = \frac{|x + i|^2}{|2x^2 + 1|}$
Recall that the modulus of a complex number $p + iq$ is $|p + iq| = \sqrt{p^2 + q^2}$.
Also, since $x$ is real, $2x^2 + 1$ is a positive real number. The modulus of a positive real number $k$ is $k$ itself. So, $|2x^2 + 1| = 2x^2 + 1$.
Therefore:
$|a + ib| = \sqrt{a^2 + b^2}$
$|x + i| = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1}$
Substitute these values back into the modulus equation:
$\sqrt{a^2 + b^2} = \frac{(\sqrt{x^2 + 1})^2}{2x^2 + 1}$
$\sqrt{a^2 + b^2} = \frac{x^2 + 1}{2x^2 + 1}$
Now, square both sides of the equation:
$(\sqrt{a^2 + b^2})^2 = \left( \frac{x^2 + 1}{2x^2 + 1} \right)^2$
$a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^2 + 1)^2}$
Hence, the statement is proved.
Question 12. Let $z_1 = 2 \;–\; i$ , $z_2 = –2 + i$. Find
(i) $Re \left(\frac{z_{1}z_{2}}{z_{1}} \right)$
(ii) $Im \left(\frac{1}{z_{1}\overline{z_{1}}} \right)$
Answer:
Given:
The complex numbers $z_1 = 2 - i$ and $z_2 = -2 + i$.
(i) To Find: $Re \left(\frac{z_{1}z_{2}}{\overline{z_{1}}}\right)$
Solution (i):
First, find the necessary components:
The conjugate of $z_1$ is $\overline{z_1} = \overline{2 - i} = 2 + i$.
The product $z_1 z_2$ is:
$z_1 z_2 = (2 - i)(-2 + i)$
$ = 2(-2) + 2(i) - i(-2) - i(i)$
$ = -4 + 2i + 2i - i^2$
$ = -4 + 4i - (-1)$ (Since $i^2 = -1$)
$ = -4 + 4i + 1$
$ = -3 + 4i$
Now, calculate the fraction $\frac{z_1 z_2}{\overline{z_1}}$:
$\frac{z_1 z_2}{\overline{z_1}} = \frac{-3 + 4i}{2 + i}$
To simplify, multiply the numerator and denominator by the conjugate of the denominator, which is $2 - i$:
$\frac{-3 + 4i}{2 + i} \times \frac{2 - i}{2 - i} = \frac{(-3 + 4i)(2 - i)}{(2 + i)(2 - i)}$
Numerator: $(-3)(2) + (-3)(-i) + (4i)(2) + (4i)(-i)$
$ = -6 + 3i + 8i - 4i^2$
$ = -6 + 11i - 4(-1)$
$ = -6 + 11i + 4 = -2 + 11i$
Denominator: $(2)^2 + (1)^2 = 4 + 1 = 5$.
So, the fraction is:
$\frac{z_1 z_2}{\overline{z_1}} = \frac{-2 + 11i}{5} = -\frac{2}{5} + \frac{11}{5}i$
The real part (Re) of this complex number is the term without $i$.
$Re \left(\frac{z_1 z_2}{\overline{z_1}}\right) = -\frac{2}{5}$
(ii) To Find: $Im \left(\frac{1}{z_{1}\overline{z_{1}}}\right)$
Solution (ii):
First, calculate the product $z_1 \overline{z_1}$.
We have $z_1 = 2 - i$ and $\overline{z_1} = 2 + i$.
$z_1 \overline{z_1} = (2 - i)(2 + i)$
Using the property $(a - ib)(a + ib) = a^2 + b^2$ (or $|z_1|^2$):
$z_1 \overline{z_1} = (2)^2 + (1)^2 = 4 + 1 = 5$
Now, find the reciprocal $\frac{1}{z_1 \overline{z_1}}$:
$\frac{1}{z_1 \overline{z_1}} = \frac{1}{5}$
To find the imaginary part, we express $\frac{1}{5}$ in the standard form $a + bi$:
$\frac{1}{5} = \frac{1}{5} + 0i$
The imaginary part (Im) is the coefficient of $i$.
$Im \left(\frac{1}{z_1 \overline{z_1}}\right) = 0$
Conclusion:
(i) $Re \left(\frac{z_{1}z_{2}}{\overline{z_{1}}}\right) = -\frac{2}{5}$
(ii) $Im \left(\frac{1}{z_{1}\overline{z_{1}}}\right) = 0$
Question 13. Find the modulus and argument of the complex number $\frac{1 \;+\; 2i}{1 \;-\; 3i}$.
Answer:
Given:
The complex number $z = \frac{1 + 2i}{1 - 3i}$.
To Find:
The modulus ($r$) and argument ($\theta$) of the complex number $z$.
Solution:
First, we need to express the complex number $z$ in the standard form $x + iy$.
Multiply the numerator and the denominator by the conjugate of the denominator, which is $1 + 3i$:
$z = \frac{1 + 2i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}$
$z = \frac{(1 + 2i)(1 + 3i)}{(1 - 3i)(1 + 3i)}$
Simplify the numerator:
Numerator $= 1(1) + 1(3i) + 2i(1) + 2i(3i)$
$ = 1 + 3i + 2i + 6i^2$
$ = 1 + 5i + 6(-1)$ (Since $i^2 = -1$)
$ = 1 + 5i - 6$
$ = -5 + 5i$
Simplify the denominator using the property $(a - ib)(a + ib) = a^2 + b^2$:
Denominator $= (1)^2 + (3)^2 = 1 + 9 = 10$
Substitute the simplified numerator and denominator back:
$z = \frac{-5 + 5i}{10}$
Separate the real and imaginary parts:
$z = \frac{-5}{10} + \frac{5}{10}i$
$z = -\frac{1}{2} + \frac{1}{2}i$
Now we have the standard form $z = x + iy$, where $x = -\frac{1}{2}$ and $y = \frac{1}{2}$.
Modulus:
The modulus $r = |z|$ is calculated as:
$r = \sqrt{x^2 + y^2} = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$
$r = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}}$
$r = \frac{1}{\sqrt{2}}$
Argument:
Let $\theta$ be the argument. Since $x = -\frac{1}{2} < 0$ and $y = \frac{1}{2} > 0$, the complex number lies in the second quadrant.
The argument $\theta$ satisfies:
$\cos \theta = \frac{x}{r} = \frac{-1/2}{1/\sqrt{2}} = -\frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}}$
$\sin \theta = \frac{y}{r} = \frac{1/2}{1/\sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$
Let $\alpha$ be the acute reference angle:
$\alpha = \tan^{-1}\left|\frac{y}{x}\right| = \tan^{-1}\left|\frac{1/2}{-1/2}\right| = \tan^{-1}|-1| = \tan^{-1}(1) = \frac{\pi}{4}$.
For an angle in the second quadrant, the principal argument $\theta$ (in the range $(-\pi, \pi]$) is:
$\theta = \pi - \alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.
Conclusion:
For the complex number $z = \frac{1 + 2i}{1 - 3i}$:
- The modulus is $r = \frac{1}{\sqrt{2}}$.
- The argument (principal value) is $\theta = \frac{3\pi}{4}$.
Question 14. Find the real numbers x and y if $(x \;–\; iy) (3 + 5i)$ is the conjugate of $–6 \;–\; 24i$.
Answer:
Given:
The complex number expression $(x - iy)(3 + 5i)$ is the conjugate of the complex number $-6 - 24i$.
$x$ and $y$ are real numbers.
To Find:
The values of the real numbers $x$ and $y$.
Solution:
Let $z = -6 - 24i$.
The conjugate of $z$ is $\bar{z} = \overline{-6 - 24i} = -6 + 24i$.
According to the problem statement:
$(x - iy)(3 + 5i) = \bar{z}$
$(x - iy)(3 + 5i) = -6 + 24i$
Expand the left side of the equation:
$(x - iy)(3 + 5i) = x(3 + 5i) - iy(3 + 5i)$
$ = 3x + 5xi - 3iy - 5i^2y$
$ = 3x + 5xi - 3iy - 5(-1)y$ (Since $i^2 = -1$)
$ = 3x + 5y + i(5x - 3y)$
Now, equate this expression to the conjugate $\bar{z}$:
$(3x + 5y) + i(5x - 3y) = -6 + 24i$
For two complex numbers to be equal, their real parts and imaginary parts must be equal.
Equating the real parts:
$3x + 5y = -6$
...(1)
Equating the imaginary parts:
$5x - 3y = 24$
...(2)
We need to solve this system of linear equations for $x$ and $y$.
Multiply equation (1) by 3 and equation (2) by 5:
$3 \times (3x + 5y = -6) \implies 9x + 15y = -18$
$5 \times (5x - 3y = 24) \implies 25x - 15y = 120$
Add the two new equations:
$(9x + 15y) + (25x - 15y) = -18 + 120$
$34x = 102$
$x = \frac{102}{34}$
$x = 3$
Substitute the value of $x = 3$ into equation (1):
$3(3) + 5y = -6$
$9 + 5y = -6$
$5y = -6 - 9$
$5y = -15$
$y = \frac{-15}{5}$
$y = -3$
Conclusion:
The real numbers are $x = 3$ and $y = -3$.
Question 15. Find the modulus of $\frac{1 \;+\; i}{1 \;-\; i} - \frac{1 \;-\; i}{1 \;+\; i}$
Answer:
Given:
The complex number expression $Z = \frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}$.
To Find:
The modulus of the complex number $Z$, denoted as $|Z|$.
Solution:
First, we simplify the expression for $Z$. Find a common denominator, which is $(1 - i)(1 + i)$.
$Z = \frac{(1 + i)(1 + i)}{(1 - i)(1 + i)} - \frac{(1 - i)(1 - i)}{(1 - i)(1 + i)}$
$Z = \frac{(1 + i)^2 - (1 - i)^2}{(1 - i)(1 + i)}$
Simplify the numerator:
$(1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i$.
$(1 - i)^2 = 1^2 - 2(1)(i) + i^2 = 1 - 2i - 1 = -2i$.
Numerator $= (1 + i)^2 - (1 - i)^2 = (2i) - (-2i) = 2i + 2i = 4i$.
Simplify the denominator using the property $(a - ib)(a + ib) = a^2 + b^2$:
Denominator $= (1 - i)(1 + i) = 1^2 + 1^2 = 1 + 1 = 2$.
Substitute the simplified numerator and denominator back into the expression for $Z$:
$Z = \frac{4i}{2} = 2i$.
Now, we need to find the modulus of $Z = 2i$.
Write $Z$ in the standard form $x + iy$: $Z = 0 + 2i$.
Here, $x = 0$ and $y = 2$.
The modulus $|Z|$ is calculated as:
$|Z| = \sqrt{x^2 + y^2} = \sqrt{(0)^2 + (2)^2}$
$|Z| = \sqrt{0 + 4} = \sqrt{4}$
$|Z| = 2$
Conclusion:
The modulus of the complex number $\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}$ is 2.
Question 16. If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4 (x^2 - y^2)$
Answer:
Given:
The relation $(x + iy)^3 = u + iv$, where $x, y, u, v$ are real numbers.
To Prove:
$\frac{u}{x} + \frac{v}{y} = 4 (x^2 - y^2)$
Proof:
We are given the equation:
$(x + iy)^3 = u + iv$
Expand the left side using the binomial expansion formula $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$:
$(x + iy)^3 = x^3 + 3(x^2)(iy) + 3(x)(iy)^2 + (iy)^3$
$ = x^3 + 3ix^2y + 3x(i^2y^2) + i^3y^3$
Using the properties $i^2 = -1$ and $i^3 = i^2 \cdot i = -i$:
$ = x^3 + 3ix^2y + 3x(-1)y^2 + (-i)y^3$
$ = x^3 + 3ix^2y - 3xy^2 - iy^3$
Group the real and imaginary parts:
$(x + iy)^3 = (x^3 - 3xy^2) + i(3x^2y - y^3)$
Now, equate this to the right side, $u + iv$:
$(x^3 - 3xy^2) + i(3x^2y - y^3) = u + iv$
Comparing the real and imaginary parts on both sides, we get:
$u = x^3 - 3xy^2$
...(1)
$v = 3x^2y - y^3$
...(2)
Assuming $x \neq 0$ and $y \neq 0$, we can divide equation (1) by $x$ and equation (2) by $y$:
From (1): $\frac{u}{x} = \frac{x^3 - 3xy^2}{x} = \frac{x(x^2 - 3y^2)}{x} = x^2 - 3y^2$
From (2): $\frac{v}{y} = \frac{3x^2y - y^3}{y} = \frac{y(3x^2 - y^2)}{y} = 3x^2 - y^2$
Now, add the expressions for $\frac{u}{x}$ and $\frac{v}{y}$:
$\frac{u}{x} + \frac{v}{y} = (x^2 - 3y^2) + (3x^2 - y^2)$
$= x^2 - 3y^2 + 3x^2 - y^2$
$= (x^2 + 3x^2) + (-3y^2 - y^2)$
$= 4x^2 - 4y^2$
$= 4(x^2 - y^2)$
Thus, we have shown that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$, assuming $x \neq 0$ and $y \neq 0$.
(Note: If $x=0$, then $u=0$ and $v=-y^3$. If $y=0$, then $u=x^3$ and $v=0$. In these cases, the expression $\frac{u}{x} + \frac{v}{y}$ involves division by zero, so the identity holds for $x \neq 0, y \neq 0$.)
Conclusion:
Given $(x + iy)^3 = u + iv$, we have proved that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$.
Question 17. If $α$ and $β$ are different complex numbers with $|β| = 1$, then find $\left| \frac{\beta\;-\;\alpha}{1\;-\;\overline{\alpha}\beta} \right|$
Answer:
Given:
$\alpha$ and $\beta$ are different complex numbers.
$|\beta| = 1$.
To Find:
The value of the modulus $\left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right|$.
Solution:
Let $Z = \frac{\beta - \alpha}{1 - \overline{\alpha}\beta}$. We need to find $|Z|$.
We know that for any complex number $w$, $|w|^2 = w \overline{w}$.
Let's calculate $|Z|^2$:
$|Z|^2 = Z \overline{Z} = \left( \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right) \overline{\left( \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right)}$
Using the properties of conjugates $\overline{\left(\frac{w_1}{w_2}\right)} = \frac{\overline{w_1}}{\overline{w_2}}$ and $\overline{w_1 - w_2} = \overline{w_1} - \overline{w_2}$:
$|Z|^2 = \left( \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right) \left( \frac{\overline{\beta - \alpha}}{\overline{1 - \overline{\alpha}\beta}} \right)$
$|Z|^2 = \left( \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right) \left( \frac{\overline{\beta} - \overline{\alpha}}{\overline{1} - \overline{\overline{\alpha}\beta}} \right)$
Since $\overline{1} = 1$ and $\overline{\overline{\alpha}\beta} = \overline{\overline{\alpha}} \overline{\beta} = \alpha \overline{\beta}$:
$|Z|^2 = \frac{(\beta - \alpha)(\overline{\beta} - \overline{\alpha})}{(1 - \overline{\alpha}\beta)(1 - \alpha \overline{\beta})}$
Expand the numerator:
Numerator $= (\beta - \alpha)(\overline{\beta} - \overline{\alpha}) = \beta\overline{\beta} - \beta\overline{\alpha} - \alpha\overline{\beta} + \alpha\overline{\alpha}$
$= |\beta|^2 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2$
Expand the denominator:
Denominator $= (1 - \overline{\alpha}\beta)(1 - \alpha \overline{\beta}) = 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + (\overline{\alpha}\beta)(\alpha\overline{\beta})$
$ = 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + \overline{\alpha}\alpha \beta\overline{\beta}$
$ = 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2 |\beta|^2$
So,
$|Z|^2 = \frac{|\beta|^2 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2}{1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2 |\beta|^2}$
We are given that $|\beta| = 1$, which implies $|\beta|^2 = 1^2 = 1$.
Substitute $|\beta|^2 = 1$ into the expression for $|Z|^2$:
$|Z|^2 = \frac{1 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2}{1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2 (1)}$
$|Z|^2 = \frac{1 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2}{1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2}$
The numerator and the denominator are identical.
$|Z|^2 = 1$
Since $|Z|$ is a modulus, it must be non-negative.
$|Z| = \sqrt{1} = 1$
(We need to ensure the denominator $1 - \overline{\alpha}\beta \neq 0$. If $1 - \overline{\alpha}\beta = 0$, then $\overline{\alpha}\beta = 1$. Taking moduli, $|\overline{\alpha}\beta| = 1 \implies |\overline{\alpha}||\beta| = 1$. Since $|\beta|=1$ and $|\overline{\alpha}|=|\alpha|$, we get $|\alpha|=1$. If $|\alpha|=1$, then $\overline{\alpha} = 1/\alpha$. Substituting into $\overline{\alpha}\beta=1$ gives $(1/\alpha)\beta=1$, which means $\beta=\alpha$. But we are given $\alpha \neq \beta$. Thus, the denominator is never zero.)
Conclusion:
The value of $\left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right|$ is 1.
Question 18. Find the number of non-zero integral solutions of the equation $|1 - i|^x=2^x$ .
Answer:
Given:
The equation $|1 - i|^x = 2^x$.
To Find:
The number of non-zero integral solutions for $x$.
Solution:
We are given the equation:
$|1 - i|^x = 2^x$
First, let's calculate the modulus of the complex number $1 - i$.
For a complex number $z = a + bi$, the modulus is $|z| = \sqrt{a^2 + b^2}$.
Here, $a = 1$ and $b = -1$.
$|1 - i| = \sqrt{(1)^2 + (-1)^2}$
$|1 - i| = \sqrt{1 + 1}$
$|1 - i| = \sqrt{2}$
Now substitute this value back into the given equation:
$(\sqrt{2})^x = 2^x$
We can write $\sqrt{2}$ as $2^{1/2}$. Substituting this:
$(2^{1/2})^x = 2^x$
Using the exponent rule $(a^m)^n = a^{mn}$:
$2^{x/2} = 2^x$
Since the bases are equal, we can equate the exponents:
$\frac{x}{2} = x$
To solve for $x$, subtract $x$ from both sides:
$\frac{x}{2} - x = 0$
$\frac{x - 2x}{2} = 0$
$\frac{-x}{2} = 0$
$-x = 0$
$x = 0$
The only integral solution found is $x = 0$.
However, the question asks for the number of non-zero integral solutions.
Since the only integral solution is 0, there are no non-zero integral solutions.
Conclusion:
There are no non-zero integral solutions to the equation $|1 - i|^x = 2^x$. The number of such solutions is 0.
Question 19. If $(a + ib) (c + id) (e + if) (g + ih) = A + iB$, then show that
$(a^2 + b^2 ) (c^2 + d^2 ) (e^2 + f^2 ) (g^2 + h^2 ) = A^2 + B^2$
Answer:
Given:
The equation involving products of complex numbers:
$(a + ib) (c + id) (e + if) (g + ih) = A + iB$
...(i)
where $a, b, c, d, e, f, g, h, A, B$ are real numbers.
To Prove:
$(a^2 + b^2 ) (c^2 + d^2 ) (e^2 + f^2 ) (g^2 + h^2 ) = A^2 + B^2$
Proof:
We start with the given equation (i):
$(a + ib) (c + id) (e + if) (g + ih) = A + iB$
Take the modulus of both sides of the equation:
$|(a + ib) (c + id) (e + if) (g + ih)| = |A + iB|$
We use the property that the modulus of a product of complex numbers is the product of their moduli: $|z_1 z_2 ... z_n| = |z_1| |z_2| ... |z_n|$.
$|a + ib| |c + id| |e + if| |g + ih| = |A + iB|$
Recall that the modulus of a complex number $p + iq$ is $|p + iq| = \sqrt{p^2 + q^2}$.
Apply this to each term:
$|a + ib| = \sqrt{a^2 + b^2}$
$|c + id| = \sqrt{c^2 + d^2}$
$|e + if| = \sqrt{e^2 + f^2}$
$|g + ih| = \sqrt{g^2 + h^2}$
$|A + iB| = \sqrt{A^2 + B^2}$
Substitute these modulus values back into the equation:
$\sqrt{a^2 + b^2} \sqrt{c^2 + d^2} \sqrt{e^2 + f^2} \sqrt{g^2 + h^2} = \sqrt{A^2 + B^2}$
Square both sides of the equation:
$\left( \sqrt{a^2 + b^2} \sqrt{c^2 + d^2} \sqrt{e^2 + f^2} \sqrt{g^2 + h^2} \right)^2 = \left( \sqrt{A^2 + B^2} \right)^2$
Using the property $(\sqrt{p}\sqrt{q}...)^2 = (\sqrt{p})^2 (\sqrt{q})^2 ... = pq...$
$(\sqrt{a^2 + b^2})^2 (\sqrt{c^2 + d^2})^2 (\sqrt{e^2 + f^2})^2 (\sqrt{g^2 + h^2})^2 = A^2 + B^2$
$(a^2 + b^2 ) (c^2 + d^2 ) (e^2 + f^2 ) (g^2 + h^2 ) = A^2 + B^2$
Hence, the statement is proved.
Question 20. $\left( \frac{1 \;+\; i}{1 \;-\; i} \right)^{m} = 1$, then find the least positive integral value of m
Answer:
Given:
The equation is $\left( \frac{1 + i}{1 - i} \right)^{m} = 1$.
To Find:
The least positive integral value of $m$.
Solution:
First, we simplify the complex fraction inside the parenthesis: $\frac{1 + i}{1 - i}$.
To do this, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of $(1 - i)$ is $(1 + i)$.
$\frac{1 + i}{1 - i} = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}$
$\frac{1 + i}{1 - i} = \frac{(1 + i)^2}{(1 - i)(1 + i)}$
Now, let's simplify the numerator and the denominator separately.
Numerator: $(1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i$. (Since $i^2 = -1$)
Denominator: $(1 - i)(1 + i) = 1^2 - (i)^2 = 1 - (-1) = 1 + 1 = 2$.
Substitute these back into the fraction:
$\frac{1 + i}{1 - i} = \frac{2i}{2} = i$
Now, the given equation becomes:
$(i)^m = 1$
We need to find the least positive integer value of $m$ for which $i^m = 1$.
Let's examine the powers of $i$:
- $i^1 = i$
- $i^2 = -1$
- $i^3 = i^2 \cdot i = -1 \cdot i = -i$
- $i^4 = i^2 \cdot i^2 = (-1)(-1) = 1$
We see that the first time the power of $i$ equals 1 is when the exponent is 4.
The powers of $i$ repeat in a cycle of 4, so $i^m = 1$ whenever $m$ is a multiple of 4 (i.e., $m = 4k$ for any positive integer $k$).
The positive integral values of $m$ that satisfy the equation are 4, 8, 12, 16, and so on.
The least of these positive integral values is 4.
Therefore, the least positive integral value of $m$ is 4.